• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于边缘计算的电力任务最优调度算法研究
Research on power task optimal scheduling algorithm based on edge computing
Received:February 23, 2021  Revised:March 12, 2021
DOI:10.19753/j.issn1001-1390.2024.08.014
中文关键词: 电力任务  移动边缘计算  蚁群算法  负载均衡能力  调度方法
英文关键词: power task, mobile edge computing, ant colony algorithm, load balancing ability, scheduling method
基金项目:南方电网公司科技项目(090000KK5210159)
Author NameAffiliationE-mail
LV Zhining* Shenzhen Power Supply Co., Ltd., Shenzhen 518000, Guangdong, China lvzn1973@163.com 
LI yingjie Shenzhen Power Supply Co., Ltd., Shenzhen 518000, Guangdong, China lvzn1973@163.com 
TAN Jie China Southern Power Grid Shenzhen Digital Grid Research Institute Co., Ltd., Shenzhen 518000, Guangdong, China lvzn1973@163.com 
Hits: 499
Download times: 135
中文摘要:
      针对云计算框架的传播延迟,无法满足电力系统对低延迟和可靠性的要求。在移动边缘计算框架的基础上,提出了一种用于电力任务调度的改进蚁群算法。在蚁群算法选择的最短路径的基础上添加了负载平衡能力,降低总体能耗和防止某个移动边缘云超载。通过仿真分析验证了该调度方法的优越性。结果表明,随着用户设备、边缘云、带宽和总计算资源数量的增加,文中调度方法在平均能耗和任务卸载数量方面均优于贪心算法和距离优先算法,具有一定的实用价值。
英文摘要:
      The propagation delay of cloud computing framework cannot meet the requirements of low delay and reliability of power system. Based on the framework of mobile edge computing, an improved ant colony algorithm for power task scheduling is proposed. On the basis of the shortest path selected by ant colony algorithm, load balancing ability is added to reduce the overall energy consumption and prevent overloading of a mobile edge cloud. The superiority of this scheduling method is verified by simulation analysis. The results show that with the increase of user equipment, edge cloud, bandwidth and total computing resources, the scheduling method proposed in this paper outperforms greedy algorithm and distance priority algorithm in terms of average energy consumption and number of task unloads, which has practical value.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd