• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于微型PMU数据挖掘的智能配电网态势感知方法研究
Smart Distribution Network Situation Awareness Method Based on Micro PMU Data Mining
Received:March 24, 2021  Revised:April 13, 2021
DOI:10.19753/j.issn1001-1390.2024.07.006
中文关键词: 微型PMU  机器学习  智能配电网  态势感知  电力大数据
英文关键词: Micro PMU  machine learning  intelligent distribution network  situation awareness  big data
基金项目:南网公司科技项目 GXKJXM20190607
Author NameAffiliationE-mail
li xin tong* Electric Power Research Institute of Guangxi Power Grid CoLtd lixintong9310@163.com 
Yu-xiaoyong Electric Power Research Institute of Guangxi Power Grid CoLtd lixintong9310@163.com 
Yang-guoyan Guilin Power Supply Burean, Guangxi Power Grid CoLtd lixintong9310@163.com 
Qin-liwen Electric Power Research Institute of Guangxi Power Grid CoLtd lixintong9310@163.com 
Ou-shifeng Electric Power Research Institute of Guangxi Power Grid CoLtd lixintong9310@163.com 
Hits: 421
Download times: 212
中文摘要:
      智能配电网态势感知是配电系统可靠、经济和安全运行的重要基础,其数据的规模和类型正在快速增长,呈现出典型的电力大数据特征。针对智能配电网微型PMU系统采集和处理的数据呈海量增长的趋势,文章介绍了一种基于微型PMU数据挖掘的智能配电网态势感知方法,快速准确地判断出系统安全状态。该方法首先通过移动和动态时间窗口对采集数据进一步挖掘各类事件的典型特征量,然后根据区域选择和事件类型进行分层标记,降低机器学习算法的运算维度,提高计算效率。随后文章设计了三类型分类器并通过与其他两类分类器进行比较。通过算例测试数据得出所提分类器各项性能指标优异,可见该分类器对于智能配电网态势感知体系建立具有重要的参考价值。
英文摘要:
      Intelligent distribution network situation awareness is an important foundation for the reliable, economic and safe operation of the distribution system. The scale and type of its data are growing rapidly, showing typical power big data characteristics. The method firstly uses moving and dynamic time windows to further mine the typical characteristics of various events, and then performs hierarchical labeling according to region selection and event types, reducing the computational dimension of machine learning algorithms and improving computational efficiency. Then this paper designs three types of classifiers and compares them with the other two types of classifiers. Through the test data of the example, it is concluded that the performance indicators of the proposed classifier are excellent.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd