• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于seq2seq模型的非侵入式负荷分解算法
Non-intrusive load decomposition algorithm based on seq2seq model
Received:March 24, 2021  Revised:March 31, 2021
DOI:10.19753/j.issn1001-1390.2024.06.009
中文关键词: 非侵入式负荷分解  seq2seq  卷积神经网络  长短期记忆网络  深度学习  低频采样
英文关键词: non-intrusive load decomposition, seq2seq, convolutional neural network, long and short-term memory network, deep learning, low frequency sampling
基金项目:国家自然科学基金项目(51677072);中央高校基本科研业务费专项资金资助(2018MS074).
Author NameAffiliationE-mail
YUE Jianren School of Control and Computer Engineering, North China Electric Power University 2192221004@ncepu.edu.cn 
SONG Yaqi* School of Control and Computer Engineering, North China Electric Power University songyaqi@ncepu.edu.cn 
YANG Danxu School of Control and Computer Engineering, North China Electric Power University yangdx@ncepu.edu.cn 
LI Li School of Control and Computer Engineering, North China Electric Power University haolily12@163.com 
Hits: 686
Download times: 181
中文摘要:
      非侵入式负荷分解对于节能减排、负荷调峰、智能用能等方面均具有重要的现实意义。针对目前非侵入式负荷分解方法在低频采样条件下(1 Hz及以下)分解准确率较低的问题,提出了一种基于卷积神经网络(convolution netural network, CNN)与长短期记忆网络(long short-term memory, LSTM)相结合的seq2seq的非侵入式负荷分解算法(seq2seq based on CNN and LSTM,seq2seqBCL)。该深度学习模型将功率时间序列作为网络的输入,通过CNN做特征提取。考虑到电力数据的时序性,增加了LSTM层进行电器识别,相比于NILMTK中seq2seq模型降低了网络层数,简化了网络结构。在REDD数据集上对算法性能进行了评估,所提出的算法提升了整个网络系统的性能,与FHMM、CO和传统seq2seq算法相比,负荷分解准确率有明显提升。
英文摘要:
      Non-intrusive load decomposition has important practical significance for energy conservation and emission reduction, load peak shaving, and intelligent energy use. Aiming at the problem of low decomposition accuracy of current non-intrusive load decomposition methods under low frequency sampling conditions (1 Hz and below), a seq2seq non-intrusive load decomposition algorithm (seq2seq Based on CNN and LSTM, seq2seqBCL) based on the combination of convolutional neural network (CNN) and long short-term memory network (LSTM) is proposed in this paper. This deep learning model uses power time series as input to the network, and uses CNN for feature extraction. Considering the time sequence of power data, the LSTM layer is added to identify electrical appliances. Compared with the seq2seq model in NILMTK, the number of network layers is reduced and the network structure is simplified. The algorithm performance is evaluated on the REDD data set. The proposed algorithm improves the performance of the entire network system. Compared with FHMM, CO and traditional seq2seq algorithms, the accuracy of load decomposition is significantly improved.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd