• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于Volterra核的MIMO非线性电路建模及智能特征提取
Model-building and Intelligent Feature Extraction of Multi-Input Non-linear Simulated Circuit
Received:March 26, 2021  Revised:May 08, 2021
DOI:10.19753/j.issn1001-1390.2021.10.026
中文关键词: 多输入多输出电路  Volterra级数  整体退火遗传算法  智能特征提取  故障诊断
英文关键词: Multi-Input Multi-Output (MIMO), Series of Volterra, Whole Annealing Genetic Algorithm(WAGA), Intelligent Feature Extraction, Fault Diagnosis
基金项目:国家自然科学基金资助项目( 项目编号)61803128
Author NameAffiliationE-mail
chen ye* Electric Power Research Institute of Yunnan Power Grid Co. Ltd 363419628@qq.com 
Liao yao Hua Electric Power Research Institute of Yunnan Power Grid Co. Ltd 121051138@qq.com 
Wang En Electric Power Research Institute of Yunnan Power Grid Co. Ltd 1061284896@qq.com 
Zhu Mengmeng Electric Power Research Institute of Yunnan Power Grid Co. Ltd 396923800@qq.com 
Li Bo Electric Power Research Institute of Yunnan Power Grid Co. Ltd 49923387@qq.com 
CHEN YINSHENG Harbin university of science and technology chen ys@hebust.edu.cn 
Lin haijun Harbin university of science and technology lhjhlg@126.com 
Hits: 1938
Download times: 442
中文摘要:
      为了解决模拟乘法器等多输入测量电路的智能故障诊断准确率低的问题,首先研究了多输入多输出(MIMO)电路的基于Volterra级数的建模方法,为电路的故障诊断提供模型;然后提出了整体退火遗传特征提取方法,利用整体退火遗传算法的全局寻优能力优化故障诊断特征参数的提取,以选出各种故障状态之间特征差异最大的特征,以提高故障诊断的准确率;最后以模拟乘法器电路为例进行了建模及故障特征智能优化提取实验。实验表明,文中方法可以有效建模并提高智能故障诊断的准确率。
英文摘要:
      In order to solve the problem of low accuracy in intelligent fault diagnosis for multi-input measuring circuit such as analog multiplier,this project studied the model building method for Multi-input Multi-output (MIMO) Circuit based on series of Volterra, which is used as the model for circuit fault diagnosis.Then, we proposed the method of feature extraction for whole annealing genetic features: by utilizing the global optimization property of Whole Annealing Genetic Algorithm (WAGA), we improved parameter extraction for fault diagnosis feature; then we select the feature with the largest feature difference between various fault status to improve the accuracy of fault diagnosis.Lastly, we conducted an experiment of intelligent optimization and extraction of model-building features and fault features, using analog multiplier as an example. The result of the experiment has proved that, the method described in this article is effective in model-building and improving the accuracy of intelligent fault diagnosis.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd