• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于随机森林算法的V2G充电桩故障诊断研究
Research on fault diagnosis of V2G charging pile based on random forest algorithm
Received:May 26, 2021  Revised:June 08, 2021
DOI:10.19753/j.issn1001-1390.2024.08.015
中文关键词: 充电设备  开关模块  故障诊断  随机森林算法  小波包分解  核主成分分析
英文关键词: charging equipment, switch module, fault diagnosis, random forest algorithm, wavelet packet decomposition, KPCA
基金项目:国家重点研发计划资助项目(2016YFB0101900)
Author NameAffiliationE-mail
WANG Qunfei State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electrical Power University), Beijing 102206, China 1220272283@qq.com 
YIN Zhongdong* State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electrical Power University), Beijing 102206, China 13789832437@163.com 
E Tao State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electrical Power University), Beijing 102206, China 892891204@qq.com 
Hits: 414
Download times: 144
中文摘要:
      针对V2G直流充电桩开关模块的故障诊断问题,提出一种基于随机森林算法的诊断方法。该方法使用小波包分析提取故障电流信号中的特征信息,使用核主成分分析降维以降低样本数据的复杂程度,使用随机森林算法训练出适用于直流充电桩开关模块的故障诊断器。实验验证表明,采用随机森林故障诊断器可以有效诊断开关模块故障。该方案在直流充电桩开关模块故障诊断方面具有现实意义。
英文摘要:
      In order to solve the problem of fault diagnosis of switch module of V2G DC charging pile, a diagnosis method based on random forest algorithm is proposed in this paper. The method adopts wavelet packet analysis to extract the feature information of fault current signal, and uses kernel principal component analysis to reduce the complexity of sample data. The fault diagnosis device suitable for DC charging pile switch module is trained by using random forest algorithm. The experimental results show that the random forest fault diagnosis can effectively diagnose the switch module fault. The scheme is of practical significance in the fault diagnosis of DC charging pile switch module.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd