• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于电机电流的高压断路器弹簧操作机构的LM-BP故障诊断算法
LM-BP fault diagnosis algorithm for spring operating mechanism of high voltage circuit breaker based on motor current
Received:June 03, 2021  Revised:July 14, 2021
DOI:10.19753/j.issn1001-1390.2024.09.006
中文关键词: 高压断路器  弹簧操作机构  分合闸电机电流特性  故障诊断  BP神经网络
英文关键词: high voltage circuit breaker, spring operating mechanism, current characteristics of the opening and closing motor, fault diagnosis, BP neural network
基金项目:国网黑龙江电力有限公司检修公司科技项目(SGHLJG00YJJS1400303);中央高校基本科研业务费专项资金资助项目(YJ202070)。
Author NameAffiliationE-mail
ZHAO Lihua School of Electrical Engineering, Sichuan University 735644707@qq.com 
JI Yiwei* School of Electrical Engineering, Sichuan University 3497985618@qq.com 
WU Yuezheng School of Electrical Engineering, Sichuan University 1187904428@qq.com 
WU Xun School of Electrical Engineering, Sichuan University 2597342350@qq.com 
NING Wenjun School of Electrical Engineering, Sichuan University ningwj@scu.edu.cn 
HUANG Xiaolong School of Electrical Engineering, Sichuan University xlhuang2018@163.com 
REN Junwen School of Electrical Engineering, Sichuan University myboyryl@scu.edu.cn 
Hits: 438
Download times: 178
中文摘要:
      BP(back propagation)神经网络由于具有线性映射能力强及自适应能力强等优点,常被用于高压断路器弹簧操作机构的故障诊断中,但易陷入局部最小点限制了网络的收敛速度和分类精确度。文中提出了一种基于L-M算法优化BP神经网络的高压断路器操作机构故障诊断方法,分析了神经网络的数学模型及映射关系,运用L-M算法对传统BP网络进行优化,解决了传统BP神经网络梯度下降法存在局部最小化、易产生平坦区等问题,有效地提高了算法的训练速度,同时提高了分类的精确度。诊断结果表明:L-M算法优化后的BP神经网络能有效地实现高压断路器操作机构故障诊断。文中研究内容对高压断路器操作机构故障诊断提供了思路与方法,对提高高压断路器安全可靠性具有重要意义。
英文摘要:
      BP neural network is often used in fault diagnosis of spring operating mechanism of high voltage circuit breaker because of its strong linear mapping ability and self-adaptive ability. However, it is easy to fall into local minimum, which limits the convergence speed and classification accuracy of the network. This paper presents a fault diagnosis method of high voltage circuit breaker operating mechanism based on L-M algorithm to optimize BP neural network, analyzes the mathematical model and mapping relationship of neural network, optimizes the traditional BP network by using L-M algorithm, solves the problems of local minimization and flat area in traditional BP neural network gradient descent method, and effectively improves the training speed of the algorithm, as well as the accuracy of classification. The diagnosis results show that the BP neural network optimized by L-M algorithm can effectively realize the fault diagnosis of high voltage circuit breaker operating mechanism. The research content of this paper provides ideas and methods for fault diagnosis of high voltage circuit breaker operating mechanism, which is of great significance to improve the safety and reliability of high voltage circuit breaker.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd