• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于奇异值阈值理论的电力营销数据在线清洗方法
An Online Data Cleaning Algorithm for Power Marketing Data Based on Singular Value Thresholding Theory
Received:August 01, 2021  Revised:August 20, 2021
DOI:10.19753/j.issn1001-1390.2024.09.016
中文关键词: 数据清洗  电力营销数据  缺省数据恢复  奇异值阈值算法
英文关键词: data cleaning, power marketing data, missing data recovery, singular value thresholding algorithm
基金项目:国家自然科学基金资助项目( 61773308)
Author NameAffiliationE-mail
MA Hongming* State Grid Hebei Electric Power Co. Ltd. team_en0002@163.com 
MA Hao State Grid Hebei Electric Power Co. Ltd. mahao3313@sina.com 
YANG Di State Grid Hebei Electric Power Co. Ltd. muyi1013@163.com 
WU Hongbo State Grid Hebei Electric Power Co. Ltd. 1927611@qq.com 
LIU Jiacheng State Grid Hebei Electric Power Co. Ltd. team_en0001@163.com 
LI Ji State Grid Hebei Electric Power Co. Ltd. liji27@126.com 
Hits: 408
Download times: 152
中文摘要:
      能源互联网架构下,电力营销大数据是支撑智能电网众多高级应用的关键基础,数据清洗对于电力营销大数据更是极为重要。然而,数据缺失问题会不可避免地出现在实际电网运行环节中,大大影响数据的分析和使用。针对上述问题,本文以Spark大数据在线处理平台为基础,提出了融合相似用户聚类和奇异值阈值理论的在线数据清洗框架和方法。首先借助奇异值分解,证明了电力营销数据具有近似低秩特性。以此为基础,考虑电力用户的用电差异,提出了一种融合改进K最近邻算法和奇异值阈值理论的在线数据清洗框架和方法。同时,针对奇异值阈值模型计算缓慢问题,提出采用滑动时间窗在线修复策略,加快修复速度,提升修复精度。最后,通过河北省某电力营销数据验证了所提算法的有效性,实验结果显示该在线修复算法能够更快速、高效地修复大规模电力营销缺省数据。
英文摘要:
      Under the framework of energy Internet, power marketing big data is the foundation to support many advanced applications of smart grid, and data cleaning is extremely important for power marketing big data. However, the data missing problem will inevitably appear in the actual power grid operation, which greatly affects the analysis and use of data. To solve the above problem, this paper proposes an online data cleaning framework and method based on spark platform, which combines similar user clustering and singular value thresholding theory. Firstly, with the help of singular value decomposition, it is proved that the power data has the characteristics of approximate low rank. On this basis, considering the power consumption difference of power users, this paper proposes an online data cleaning frame-work and method which integrates the improved K-Nearest Neighbor clustering and the theory of singular value threshold-ing. At the same time, in order to solve the problem of slow cal-culation of singular value thresholding model, a sliding time window online recovery strategy is proposed to accelerate the repair speed and improve the recovery accuracy. Finally, the effectiveness of the proposed algorithm is verified by power marketing data of Hebei Province. The experimental results show that the online recovery algorithm can repair the large-scale default data of power marketing more quickly and effectively.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd