• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于EEMD和特征降维的非侵入式负荷分解方法研究
Research on non-intrusive load decomposition method based on EEMD and feature dimensionality reduction
Received:August 09, 2021  Revised:August 25, 2021
DOI:10.19753/j.issn1001-1390.2024.06.011
中文关键词: 非侵入式负荷分解  单通道盲源分离  集合经验模态分解  相关性过滤  主成分分析
英文关键词: non-intrusive load decomposition, single-channel blind source separation, ensemble empirical mode decomposition, correlation filtering, principal component analysis
基金项目:国家自然科学基金项目(52067004);贵州省科学技术基金项目 ([2019]1058, [2019]1128)
Author NameAffiliationE-mail
WANG Min School of Electrical Engineering, Guizhou University 2692151916@qq.com 
ZHANG Mengjian School of Electrical Engineering, Guizhou University 2311082906@qq.com 
YU Hongbo School of Electrical Engineering, Guizhou University 2247261662@qq.com 
XIONG Wei* School of Electrical Engineering, Guizhou University 420034562@qq.com 
YUAN Xufeng School of Electrical Engineering, Guizhou University 17015676@qq.com 
ZOU xiaosong School of Electrical Engineering, Guizhou University 734279482@qq.com 
Hits: 508
Download times: 191
中文摘要:
      针对现有非侵入式居民用电负荷监测缺乏对独立负荷完整、全面的分解方法,导致用电信息的完整性得不到保证的不足,提出一种基于集合经验模态分解(ensemble empirical mode decomposition, EEMD)和Pearson-PCA改进的盲源分离算法。利用EEMD对总功率信号分解,以消除经验模态在分解过程中易出现模态混叠的现象,并得到一系列固有模式函数(intrinsic mode functions, IMF)。结合Pearson相关系数和主成分分析法(principal component analysis, PCA),提出Pearson-PCA改进算法对IMF进行降维,剔除相关性较弱的IMF分量,以及估计源信号数目。运用快速独立分量分析(fast independent component analysis, FastICA)对降维后的IMF进行分解,计算得出源功率信号。将提出的改进算法应用于非侵入式居民用电负荷分解问题,采用能量分解数据集(reference energy disaggregation data, REDD)进行实验仿真。实验结果表明:在不同用电场景下,提出的改进算法均具有较好的分解效果。
英文摘要:
      Aiming at the lack of a complete and comprehensive decomposition method for independent load in the existing non-intrusive residential electricity load monitoring, the integrity of electricity consumption information cannot be guaranteed. An improved blind source separation algorithm based on ensemble empirical mode decomposition (EEMD) and Pearson-PCA is proposed. Firstly, EEMD is used to decompose the total power signal to eliminate the modal aliasing phenomenon in the empirical mode decomposition process, and it can obtain a series of intrinsic mode functions (IMF). Secondly, combining with Pearson correlation coefficient and principal component analysis (PCA), an improved Pearson-PCA algorithm is proposed to reduce the dimensionality of the IMF, remove the weaker IMF components, and estimate the number of source signals. Then, fast independent component analysis (FastICA) is used to decompose the reduced-dimensional IMF to calculate the source power signal. Finally, the proposed improved algorithm is applied to the non-intrusive residential electricity load decomposition problem, and the reference energy disaggregation data (REDD) is used for experimental simulation. The experimental results show that the proposed improved algorithm has a better decomposition effect in different electricity consumption scenarios.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd