• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于最小化路测数据统计分析的电力无线专网网络故障诊断方法
Electrical wireless private network fault diagnosis method based on the MDT statistics
Received:August 23, 2021  Revised:September 16, 2021
DOI:10.19753/j.issn1001-1390.2002.09.018
中文关键词: 电力无线专网  故障诊断  统计推断  关键性能指标  最小化路测
英文关键词: Electrical  wireless private  network, fault  diagnosis, statistical  reasoning, key  performance indicator, minimizing  driving test.
基金项目:国家电网有限公司科技项目“电力无线专网业务泛在互联关键技术研究与应用”(5700-201918229A-0-0-00)
Author NameAffiliationE-mail
Li Wei* Information Telecommunication Branch State Grid Jiangsu Electric Power Co,Ltd 13952032641@139.com 
Dai Yong Information Telecommunication Branch State Grid Jiangsu Electric Power Co,Ltd daiyong18@163.com 
Wang Dayang Information Telecommunication Branch State Grid Jiangsu Electric Power Co,Ltd 13912918598@163.com 
Li Jingwei State Grid Nanjing Power Supply Company ljwjsw@qq.com 
Wang Wendi State Grid Nanjing Power Supply Company wwdseu@163.com 
Hits: 1482
Download times: 354
中文摘要:
      针对电力无线专网广覆盖、功率受限等问题,需要后台实时采集网络状态并对网络故障智能诊断。文中利用固定位置通信终端作为网络状态采集装置实时监测网络关键性能指标,提出了一种基于最小化路测数据的网络故障统计分析框架,并基于Softmax神经网络构建了故障智能诊断模型。文中提出的性能指标统计分析框架能够有效甄别出网络质量劣化程度,故障识别准确率达到89%以上。该方案能够有效提高电力无线专网故障诊断实时性,降低网络运维成本,具有一定实践指导价值。
英文摘要:
      To address the issues such as wide coverage and limited power, a real-time network status collection and fault diagnosis system is required for the electrical wireless private network. In this paper, the fixed terminals are utilized as the network status acquisition devices to monitor the key performance indicators of the network in a real-time manner, and a statistical analysis framework for network fault is proposed based on the data gathered by the minimizing driving test. And then, this paper also proposed a fault intelligent diagnosis model based on softmax neural network. The proposed statistical analysis framework can effectively identify the deterioration of network, and the fault identification accuracy is over 89%. The proposed system can effectively improve the timeliness of network fault diagnosis, and as a result, reduce the cost of network operation and maintenance, which makes a practical guiding sense.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd