• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于CEEMDAN和卷积神经网络的配电网故障选线新方法
A novel fault line selection method for distribution network based on CEEMDAN and convolutional neural network
Received:August 25, 2021  Revised:September 13, 2021
DOI:10.19753/j.issn1001-1390.2024.10.013
中文关键词: 故障选线  CEEMDAN  卷积神经网络  数据矩阵  故障特征向量
英文关键词: fault line selection, CEEMDAN, convolutional neural network, data matrix, fault eigenvector
基金项目:国家重点研发计划资助项目(2020YFB0905900)
Author NameAffiliationE-mail
mahongyue* TSTATE GRID INFORMATION & TELECOMMUNICATION GROUP CO .,LTD. mhy_learning@163.com 
Li Wenjing TSTATE GRID INFORMATION & TELECOMMUNICATION GROUP CO .,LTD. liwenjing@sgitg.sgcc.com.cn 
Wu Wenzhao TSTATE GRID INFORMATION & TELECOMMUNICATION GROUP CO .,LTD. wuwenzhao@sgitg.sgcc.com.cn 
zhangnan TSTATE GRID INFORMATION & TELECOMMUNICATION GROUP CO .,LTD. cara0526@163.com 
wangjing TSTATE GRID INFORMATION & TELECOMMUNICATION GROUP CO .,LTD. wangjing_doraemon@163.com 
Hits: 378
Download times: 159
中文摘要:
      文中提出一种基于自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)和卷积神经网络(convolutional neural networks, CNN)的配电网故障选线方法。利用CEEMDAN算法分解各线路零序电流信号,得到各线路零序电流的内禀函数;将各线路内禀函数按顺序拼接到一起得到一个时频数据矩阵。时频数据矩阵囊括丰富的故障特征,可以反映当前系统工况;通过卷积神经网络自主地挖掘时频数据矩阵的故障特征向量,通过softmax函数输出故障线路编号,实现配电网故障选线。通过仿真实验表明,该方法不受过渡电阻、检测时延等因素影响,可准确、有效地识别故障线路。
英文摘要:
      A fault line selection method for distribution network based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)and convolutional neural network (CNN) is proposed. Firstly, the CEEMDAN algorithm is used to decompose zero-sequence current signal of each line to obtain the intrinsic function of zero-sequence current of each line.Secondly, the intrinsic functions of each line are spliced together in order to obtain a time-frequency data matrix containing abandunt fault features, which corresponds to the current system operating conditions.Finally, the fault eigenvector of the time-frequency data matrix are independently mined by CNN, and the fault line selection of distribution network is realized through the fault line number output of softmax function. Simulation experiments show that the method is independent of transition resistance, detection time delay and other factors, which can accurately and effectively identify the fault lines.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd