• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于最大信息挖掘广域学习系统短期电力负荷预测研究
The short term power load forecast in Wan learning system with maximum information mining
Received:September 06, 2021  Revised:September 06, 2021
DOI:10.19753/j.issn1001-1390.2022.03.006
中文关键词: 最大信息挖掘广域学习系统  支持向量机  电力负荷  混沌系统
英文关键词: wide area learning system for maximum information mining  least squares support vector machine  short term power load  chaotic system
基金项目:国网河南电力科技项目(521760170002);国家重点研发计划资助(2017YFC0804101)
Author NameAffiliationE-mail
Yang Guangyu* Overhaul Branch of State Grid Henan Electric Power Company,Henan Zhengzhou qwero2021@163.com 
Li Xiaohang Stat Grid Pingdingshan Power Supply Coompany,Henan Pingdingshan qwero2021@163.com 
Hits: 1112
Download times: 409
中文摘要:
      为了进一步挖掘混沌系统的演化信息,提升预测精度,减少训练时间,提出了一种基于最大信息挖掘广域学习系统多核LS-SVM短期电力负荷预测算法。首先,为了有效地捕捉电力负荷的非线性信息,引入了一种改进的漏积分器动态储层,不仅可以获取系统当前状态的信息,而且可以学习历史信息。进一步通过非线性随机映射从而充分挖掘非线性信息。然后提出了一种多核LS-SVM预测模型,有效综合了各个核函数的优点。通过两个电力负荷预测案例将本文方法与传统的BP算法和SVM算法进行预测误差对比,预测结果验证了本文提出的混沌时间序列预测算法具有较高的预测精度,适用于短期电力负荷预测。
英文摘要:
      In order to further mine the evolution information of chaotic system, improve the prediction accuracy and reduce the training time, a wide area learning system based on maximum information mining, multiple kernel LS-SVM was proposed for short-term power load forecasting. Firstly, in order to effectively capture the nonlinear information of power load, an improved leaky integrator dynamic reservoir was introduced, which could not only obtain the current state information of the system, but also take into account the historical state information. Then, the nonlinear information could be mine by nonlinear random mapping. Then a multiple kernel LS-SVM prediction model was proposed, which effectively integrated the advantages of each kernel function. Through two power load forecasting cases, the prediction error of this method was compared with the traditional BP algorithm and SVM algorithm. The prediction results verify that the proposed chaotic time series prediction algorithm in this paper has high prediction accuracy and is suitable for short-term power load forecasting.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd