• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进随机森林的电力变压器试验和监测数据气体浓度预测
Gas concentration prediction of power transformer test and monitoring data based on Improved Random Forest
Received:September 10, 2021  Revised:September 28, 2021
DOI:10.19753/j.issn1001-1390.2024.11.026
中文关键词: 电力变压器  经验模态分解  粒子群算法  随机森林  气体浓度
英文关键词: power transformer  empirical mode decomposition  particle swarm optimization  random forest  gas concentration
基金项目:南网科技项目(066600KK58200019)
Author NameAffiliationE-mail
zhaochao* Electric Power Research Institute of Guizhou Power Grid Co.,Ltd. zuoyecbux77@163.com 
zhangxun Electric Power Research Institute of Guizhou Power Grid Co.,Ltd. zuoyecbux77@163.com 
wangmian Electric Power Research Institute of Guizhou Power Grid Co.,Ltd. zuoyecbux77@163.com 
fanqiang Electric Power Research Institute of Guizhou Power Grid Co.,Ltd. zuoyecbux77@163.com 
huangjunkai Electric Power Research Institute of Guizhou Power Grid Co.,Ltd. zuoyecbux77@163.com 
chenpeilong Electric Power Research Institute of Guizhou Power Grid Co.,Ltd. zuoyecbux77@163.com 
Hits: 382
Download times: 116
中文摘要:
      针对现有电力变压器油中溶解气体浓度预测方法预测精度低的问题,提出了一种结合经验模态分解和改进粒子群优化的随机森林算法来预测变压器油中气体浓度。利用改进粒子群算法优化的随机森林模型对经验模态分解后的各分量进行预测,并将各分量的预测结果叠加为最终预测结果。通过算例对该模型的预测结果进行分析,验证了该方法的准确性。结果表明,相比于常规预测模型,该模型预测结果更为接近气体浓度实际值,能够有效提高模型的预测精度,为其他领域的预测提供了一定的参考。
英文摘要:
      Aiming at the problem of low prediction accuracy of existing prediction methods of dissolved gas concentration in power transformer oil, a stochastic forest algorithm combining empirical mode decomposition and improved particle swarm optimization is proposed to predict the gas concentration in transformer oil. The stochastic forest model optimized by improved particle swarm optimization is used to predict the components after empirical mode decomposition, and the prediction results of each component are superimposed into the final prediction results.The prediction results of the model are analyzed through an example, accuracy of the method is verified.The results show that compared with the conventional prediction model, prediction result of the model is closer to the actual value of gas concentration, can effectively improve the prediction accuracy of the model, provides a certain reference for the prediction of other fields.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd