• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于网损二阶灵敏度的分布式电源出力鲁棒优化方法
Robust optimization method of distributed generation output based on second-order sensitivity network loss
Received:October 13, 2021  Revised:October 26, 2021
DOI:10.19753/j.issn1001-1390.2002.09.010
中文关键词: 分布式电源  配电网  网损二阶灵敏度矩阵  二次规划  鲁棒优化
英文关键词: Distributed generation  distribution network  second order sensitivity network loss  quadratic programming  robust optimization
基金项目:国家自然科学基金资助项目( 51977160)
Author NameAffiliationE-mail
Ouyang Zengkai Fan* Marketing Service Center of Jiangsu Electric Power Co,Ltd lxbctgu@163.com 
Duan Meimei Marketing Service Center of Jiangsu Electric Power Co,Ltd lxbctgu@163.com 
Tian Zhengqi Marketing Service Center of Jiangsu Electric Power Co,Ltd lxbctgu@163.com 
Shan Xiantang Henan XJ Metering Co,Ltd lxbctgu@163.com 
Hits: 1108
Download times: 355
中文摘要:
      随着分布式电源大量分散接入配电网,一方面造成了配电网网损增加,另一方面,其出力的波动性造成了分布式电源消纳困难。为此,本文提出了基于二阶灵敏度网损的分布式电源出力鲁棒优化方法。首先,通过泰勒展开推导了基于二阶灵敏度的有功网损和无功网损计算公式,并将其嵌入到分布式电源出力优化模型中,建立了以综合网损最小和分布式电源出力最大化的优化模型;然后,采用多面体不确定性集合来描述分布式电源出力,构造了分布式电源出力的鲁棒优化模型,通过对偶变换将将鲁棒优化模型转化为确定性的二次规划模型。最后,通过70节点配电系统仿真结果表明,本文所提出的二阶灵敏度的网损计算方法误差较小,最大仅为5%,鲁棒优化方法可以通过多面体维数控制保守性,优化效率高。
英文摘要:
      With a large number of distributed generation connected to the distribution network, on the one hand, the network loss of the distribution network increases; on the other hand, the fluctuation of its output makes it difficult to absorb the distributed generation. Therefore, a robust optimization method of distributed generation output based on second-order sensitivity network loss is proposed in this paper. Firstly, the calculation formulas of active power loss and reactive power loss based on second-order sensitivity are derived by Taylor expansion, which are embedded into the distributed generation output optimization model, and the optimization model of minimizing comprehensive network loss and maximizing distributed generation output is established; Then, the polyhedron uncertainty set is used to describe the distributed generation output, and the robust optimization model of distributed generation output is constructed. The robust optimization model is transformed into a deterministic quadratic programming model through dual transformation. Finally, the simulation results of 70 buses distribution system show that the error of the proposed second-order sensitivity network loss calculation method is small, and the maximum error is only 5%. The robust optimization method can control the conservatism through polyhedron dimension, and the optimization efficiency is high.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd