• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进遗传算法的主动配电网优化定价策略研究
Research on Optimal Pricing Strategy of Active Distribution Network Based on Improved Genetic Algorithm
Received:November 10, 2021  Revised:December 03, 2021
DOI:10.19753/j.issn1001-1390.2024.07.017
中文关键词: 线性化最优潮流  主动配电网  电力价格  优化策略  改进遗传算法
英文关键词: linearized optimal power flow  active distribution network  electricity price  optimization strategy  improved genetic algorithm
基金项目:南网科技项目 (670000KK52200101)
Author NameAffiliationE-mail
Hu Xie Digital Grid Research Institute,CSG,Guangdong Guangzhou, China xuehu198602@163.com 
Zhanjie Yang Digital Grid Research Institute,CSG,Guangdong Guangzhou, China xuehu198602@163.com 
Wei Zhang Digital Grid Research Institute,CSG,Guangdong Guangzhou, China xuehu198602@163.com 
Chaolin He Digital Grid Research Institute,CSG,Guangdong Guangzhou, China xuehu198602@163.com 
Xinglang Xie Digital Grid Research Institute,CSG,Guangdong Guangzhou, China xuehu198602@163.com 
Rui Pan* Shenzhen Digital Grid Research Institute CSG,Guangdong Shenzhen, China xuehu198602@163.com 
Hits: 416
Download times: 149
中文摘要:
      由于传统的主动配电网优化定价策略没有设置等式和不等式约束条件,使电力定价超过设定的最高限值,降低了定价效率,基于此,研究一种基于改进遗传算法的主动配电网优化定价策略。首先将最优的机组有功费用和无功费用作为目标建立目标函数,即定价优化策略模型,然后设置其等式约束条件和不等式约束条件,使电力定价不超过设定的最高限值,最后在约束条件下利用改进后的遗传算法对最优定价策略模型进行求解,获取最优定价。实验结果表明,所研究方法在大于设定的价格下限0.5元/度的基础上,定价更高一点,基于电力企业角度,说明所研究方法优化后的主动配电网定价更为合理,并且定价效率较高。
英文摘要:
      Because the traditional active distribution network optimal pricing strategy does not set equality and inequality constraints, the power pricing exceeds the set maximum limit and reduces the pricing efficiency. Based on this, an active distribution network optimal pricing strategy based on improved genetic algorithm is studied. First, the optimal unit active power cost and reactive power cost are taken as objectives to establish an objective function, that is, a pricing optimization strategy model and then the equality and inequality constraints are set so that the power price does not exceed the set maximum limit, and finally Under constrained conditions, the improved genetic algorithm is used to solve the optimal pricing strategy model to obtain the optimal pricing. The experimental results show that the research method is priced a little higher on the basis of 0.5 yuan/degree greater than the set price lower limit. From the perspective of power companies, it shows that the optimized active distribution network pricing by the research method is more reasonable and the price is Higher efficiency.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd