• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
能源互联网终端用户异常负荷数据辨识与修正
Identification and correction of abnormal load data of Energy Internet terminal users
Received:December 20, 2021  Revised:January 07, 2022
DOI:10.19753/j.issn1001-1390.2024.11.008
中文关键词: 能源互联网  异常负荷检测  异常负荷修正  双向LSTM  误差分析
英文关键词: Energy  Internet, Abnormal  load detection, Abnormal  load correction, BiLSTM, The  error analysis
基金项目:国家电网公司总部科技项目(1300-202013387A-0-0-00)
Author NameAffiliationE-mail
zhang kai* State Grid Hebei Electric Power Co, LTD 1185923494@qq.com 
Guo Wei Marketing Service Center of State Grid Hebei Electric Power Co, LTD guoweidianli@163.com 
Wei Xinjie State Grid Hebei Electric Power Co, LTD weixinjie_2000@163.com 
Yang Xiaolong Information and Communication Branch, State Grid Hebei Electric Power Co 277135039@qq.com 
Luo Xin Beijing Qingsoft Innovation Technology Co, LTD xluo@tsingsoft.com.cn 
Hits: 394
Download times: 106
中文摘要:
      随着能源互联网的快速发展,终端用户侧用能数据呈现爆炸式增长。采集到的海量数据因自身设备故障或者外部环境因素影响会出现大量的异常负荷数据。文章提出了基于PSO-BiLSTM神经网络的能源互联网异常负荷数据检测与修正方法。该方法首先通过大量正常负荷数据训练双向LSTM模型,并选择PSO优化算法对预测模型的参数进行寻优,将经过参数调优的双向LSTM模型用于负荷预测。基于负荷预测结果,采用误差分析和异常值判定准则来检测负荷曲线中的异常负荷数据,最后将检测出的异常负荷数据应用预测结果对其进行修正。实验证明,该方法具有较好异常负荷数据检测效果,且易于训练,异常负荷数据检测的错误率较低。
英文摘要:
      With the rapid development of energy Internet, the side of terminal users energy consumption data presents explosive growth.SA large amount of abnormal load data may occur in the collected massive data due to device faults or external environmental factors.SThis paper presents a method for detecting and correcting abnormal load data of energy Internet based on PSO-BiLSTM neural network.SFirstly, a large amount of normal load data is used to train the bidirectional LSTM model, and PSO optimization algorithm is selected to optimize the parameters of the prediction model, and the optimized bidirectional LSTM model is used for load prediction.SBased on the load prediction results, the abnormal load data in the load curve are detected by error analysis and outlier judgment criterion. Finally, the abnormal load data detected are corrected by the prediction results.SExperimental results show that this method has good effect on abnormal load data detection, and it is easy to train, and the error rate of abnormal load data detection is low.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd