• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于特征融合的GA-SVM配电网单相接地故障选线方法
GA-SVM method for single-phase grounding fault line selection in distribution network based on feature fusion
Received:February 24, 2022  Revised:March 10, 2022
DOI:10.19753/j.issn1001-1390.2025.01.017
中文关键词: 单相接地故障  特征融合  GA-SVM  暂态零序电流  小样本数据
英文关键词: single-phase grounding fault, feature fusion, GA-SVM, transient zero-sequence current, small sample data
基金项目:基于全电缆线路的小电流接地故障仿真分析研究(SGSXDT00YCJS2100298);国网山西省电力公司科技资助项目(5205B02000FC)
Author NameAffiliationE-mail
Zhang Xiaopeng Datong Power Supply Company of State Grid zhangxiaopeng@sx.sgcc.com.cn 
Bai Jie Datong Power Supply Company of State Grid baijie@163.com 
Sun Naijun Datong Power Supply Company of State Grid 13803422759@139.com 
Li Jie Datong Power Supply Company of State Grid 13803422759@139.com 
Zheng Shuai* Institute of Electrical and Control Engineering, North China University of Technology zs2351674800@126.com 
Wan Qingzhu Institute of Electrical and Control Engineering, North China University of Technology wanqz@ncut.edu.cn 
Hits: 289
Download times: 90
中文摘要:
      针对配电网单相接地故障数据量较少时,选线方法精度不高,提出一种基于特征融合的遗传算法优化支持向量机(genetic algorithm-support vector machine, GA-SVM)配电网单相接地故障选线方法,采用傅里叶变换、有功功率法以及小波包变换对不同故障工况下每一条线路的暂态零序电流进行分解,提取基波幅值、五次谐波幅值、平均有功功率分量及小波能量值四种特征,经主成分分析法对这四种特征进行融合,提取主成分分量,建立特征数据库,将特征数据库的80%作为训练集,20%作为测试集,通过GA-SVM对特征数据库中的样本进行训练,实现故障选线。通过MATLAB/Simulink搭建包含5条馈线的配电网仿真模型进行验证,结果表明,提出的算法可以通过小样本数据实现故障选线,选线精度较高,适用性强。
英文摘要:
      Aiming at the low accuracy of line selection method when the data amount of single-phase grounding fault in distribution network is small, a genetic algorithm optimized support vector machine (GA-SVM) method for single-phase grounding fault line selection in distribution network based on feature fusion is proposed, which adopts Fourier transform, the active power method and wavelet packet transform decompose the transient zero-sequence current of each line under different fault conditions, extracts four features, including fundamental wave amplitude, fifth harmonic amplitude, average active power component and wavelet energy value. The four features are fused by principal component analysis method, the principal component is extracted, and the feature database is established. 80% of the feature database is used as the training set, 20% as the test set, the samples in the feature database are trained by GA-SVM to realize fault line selection. The simulation model of distribution network with five feeders is built by MATLAB/Simulink. The results show that the proposed algorithm can realize fault line selection through small sample datawith high accuracy and strong applicability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd