• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多维信息融合的电力变压器故障诊断方法研究
Research on fault diagnosis method of power transformer based on multi-dimensional information fusion
Received:March 31, 2022  Revised:April 21, 2022
DOI:10.19753/j.issn1001-1390.2024.10.009
中文关键词: 多维信息融合  电力变压器  故障特征  极限学习机  D-S证据理论
英文关键词: multi-dimensional information fusion, power transformer, fault characteristics, extreme learning machine, D-S evidence theory
基金项目:国家重点研发计划资助(2017YFC0804101);内蒙古电力(集团)有限责任公司科技项目(2021-14)
Author NameAffiliationE-mail
DaiZehui* Erdos Electric Power Bureau of Inner Mongolia Electric Power (Group) Co , Ltd dzh199102@163.com 
JingQuan Inner Mongolia Power (Group) Co, Ltd dzh199102@163.com 
MengYing Erdos Electric Power Bureau of Inner Mongolia Electric Power (Group) Co , Ltd dzh199102@163.com 
HuangLei Erdos Electric Power Bureau of Inner Mongolia Electric Power (Group) Co , Ltd dzh199102@163.com 
HanFeng Erdos Electric Power Bureau of Inner Mongolia Electric Power (Group) Co , Ltd dzh199102@163.com 
ZhengDapeng Erdos Electric Power Bureau of Inner Mongolia Electric Power (Group) Co , Ltd dzh199102@163.com 
Hits: 775
Download times: 142
中文摘要:
      考虑到现有变压器故障诊断方法仅针对单一故障特征,难以对电力变压器的实际情况做出准确、全面的判断。在电力变压器多维信息融合的基础上,提出了一种改进极限学习机和改进D-S证据理论相结合的故障诊断方法。通过后验概率映射优化极限学习机的输出,得到不同标签的概率,使用改进的证据理论来融合概率分配矩阵。通过试验对诊断方法优化前后进行对比分析,验证了该方法的优越性。结果表明,与优化前的故障诊断方法相比,该方法具有更高的故障识别准确率,准确率达到96.50%,能准确识别出电力变压器的各种故障,可为状态检修提供决策依据。
英文摘要:
      Considering that the existing transformer fault diagnosis methods are only for a single fault feature, it is difficult to make an accurate and comprehensive judgment on the actual situation of the power transformer. On the basis of multi-dimensional information fusion of power transformer, a fault diagnosis method combining the improved extreme learning machine and the improved D-S evidence theory is proposed. The output of the limit learning machine is optimized by a posteriori probability mapping, and the probabilities of different labels are obtained, and the improved evidence theory is used to fuse the probability distribution matrix. The superiority of this method is verified by comparing and analyzing the diagnosis methods before and after optimization. This method has higher fault identification accuracy, and the accuracy rate reaches 96.50%, and can accurately identify various faults of power transformers, which can provide decision-making basis for condition maintenance.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd