• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进SVM的电力用户异常用电行为检测方法研究
Research on detection method of abnormal power consumption behavior of power users based on Improved SVM
Received:April 13, 2022  Revised:April 27, 2022
DOI:10.19753/j.issn1001-1390.2022.12.023
中文关键词: 智能电网  电力用户  异常用电  蚁狮优化算法  支持向量机
英文关键词: smart grid  power users  abnormal power consumption  ant lion optimization algorithm  support vector machine
基金项目:南方电网有限责任公司科技项目(059300HK42210007)
Author NameAffiliationE-mail
Zhang Lijuan* Information center of Yunnan Power Grid Co.,Ltd zhanglijuan0503@163.com 
Bao Fu Information center of Yunnan Power Grid Co.,Ltd zhanglijuan0503@163.com 
Hits: 1791
Download times: 318
中文摘要:
      针对现有异常用电行为检测方法提取特征单一、检测精度不高等问题,提出了一种将改进蚁狮优化算法和改进支持向量机相结合用于检测电力用户异常用电行为。采用决策树优化支持向量机转换为多级分类器,通过改进蚁狮优化算法优化支持向量机参数提高训练速度。通过试验对多种异常用电行为进行分析,验证了所提方法的优越性。结果表明,与传统的异常数据检测方法相比,该方法具有更高的检测精度和更低的训练时间。
英文摘要:
      Aiming at the problems of single feature extraction and low detection accuracy of the existing abnormal power consumption behavior detection methods, an improved ant lion optimization algorithm and improved support vector machine are proposed to detect the abnormal power consumption behavior of power users. The decision tree is used to optimize the support vector machine into a multi-level classifier, and the ant lion optimization algorithm is improved to optimize the parameters of the support vector machine to improve the training speed. A variety of abnormal power consumption behaviors are analyzed through experiments to verify the superiority of the proposed method. The results show that the proposed method has higher detection accuracy and lower training time than traditional anomaly data detection methods.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd