• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进蚁狮优化算法的可再生能源分布式电源优化配置
Optimal Configuration of Renewable Energy Distributed Power Generation based on Improved Ant Lion Optimization Algorithm
Received:April 13, 2022  Revised:May 05, 2022
DOI:10.19753/j.issn1001-1390.2022.11.012
中文关键词: ARM可再生能源  分布式电源  蚁狮优化算法
英文关键词: Renewable Energy  Distributed generation, Ant lion optimization algorithm
基金项目:1.常州市科技计划(应用基础研究)(项目名称:配电网接入分布式风电的系统规划及运行控制研究,项目编号:CJ20190022);2.江苏省教育厅高职院校工程中心建设项目(项目名称:能源互联网及大数据集成应用工程中心,项目编号:苏教科【2018】10号)
Author NameAffiliationE-mail
CaiHao* School of intelligent manufacturing,Changzhou Vocational Institute of Technology;School of Electrical Engineering, Southeast University c16882662022@163.com 
ShiKai School of Electrical and Information Engineering, Jiangsu University c16882662022@163.com 
TangJing School of intelligent manufacturing,Changzhou#$NBSVocational#$NBSInstitute#$NBSof#$NBSTechnology c16882662022@163.com 
FengFei School of intelligent manufacturing,Changzhou#$NBSVocational#$NBSInstitute#$NBSof#$NBSTechnology c16882662022@163.com 
Hits: 1321
Download times: 361
中文摘要:
      分布式电源的合理规划能够降低配电网的功率损耗,针对可再生能源分布式电源规划配置问题,提出了一种基于改进蚁狮优化算法的可再生能源分布式电源优化配置方法。该方法首先建立以最小化实际功率损耗和改善配电网电压分布与电压稳定性为目标的多目标函数,然后利用改进蚁狮优化算法,通过模仿自然界中蚁狮的狩猎行为,统筹考虑损耗敏感系数和电压敏感系数,推导出不同类型的分布式电源单元的最佳总线位置和容量,最后以IEEE-33总线径向分布系统进行了仿真实验。实验结果表明,与其他算法相比,所提算法在降低功率损耗和电压分布方面更优,从而验证了本文所提的算法的适应性和有效性。
英文摘要:
      Reasonable planning of distributed power generation can reduce the power loss of distribution network. In this paper, aiming at the planning and configuration problem of renewable energy distributed power generation, an optimal configuration method of renewable energy distributed power generation based on improved ant lion optimization algorithm is proposed. This method firstly establishes a multi-objective function aiming at minimizing the actual power loss and improving the voltage distribution and voltage stability of the distribution network, and then using the improved ant lion optimization algorithm to imitate the hunting behavior of ant lions in nature, taking into account loss sensitivity Coefficients and voltage sensitivity coefficients are used to deduce the optimal bus position and capacity of different types of distributed power supply units. Finally, a simulation experiment is carried out with the IEEE-33 bus radial distribution system. The experimental results show that, compared with other algorithms, the algorithm proposed in this paper is better in reducing power loss and voltage distribution, which verifies the adaptability and effectiveness of the algorithm proposed in this paper.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd