• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多元振动序列共性特征的电抗器故障诊断
Reactor fault diagnosis based on common feature of multivariate vibration sequences
Received:June 01, 2022  Revised:June 19, 2022
DOI:10.19753/j.issn1001-1390.2025.03.024
中文关键词: 高压并联电抗器  故障诊断  特征选择  递归特征消除算法  遗传算法
英文关键词: high voltage shunt reactor, fault diagnosis, feature selection, SVM-RFE, GA
基金项目:国家电网公司科技项目(52199919000A)
Author NameAffiliationE-mail
FU Ming School of Electronic Information and Communication, Huazhong University of Science and Technology,Wuhan 430074, China ming_fu@hust.edu.cn 
ZHU Ming School of Electronic Information and Communication, Huazhong University of Science and Technology,Wuhan 430074, China zhuming@hust.edu.cn 
MEI Jie* School of Electronic Information and Communication, Huazhong University of Science and Technology,Wuhan 430074, China meijie@hust.edu.cn 
ZHANG Jing NARI Group (State Grid Electric Power Research Institute),Nanjing 211106,China.3.State Grid Electric Power Research Institute Wuhan NARJ Group, Wuhan 430074, China hzzhj2008@163.com 
XIAO Li NARI Group (State Grid Electric Power Research Institute),Nanjing 211106,China.3.State Grid Electric Power Research Institute Wuhan NARJ Group, Wuhan 430074, China xiaoli0929@163.com 
ZHANG Zongxi State Grid Sichuan Electric Power Research Institute, Chengdu 610041, China zhang_zxi@163.com 
Hits: 239
Download times: 63
中文摘要:
      针对当前特征选择算法只适用于单元振动序列的限制,提出了结合基于支持向量机递归特征消除算法(support vector machine recursive feature elimination algorithm, SVM-RFE)和遗传算法(genetic algorithm, GA)的多元振动序列特征选择算法SVM-RFE-GA。以某220 kV高压并联电抗器为研究对象搭建了机械故障模拟平台,设置了5种不同设备状态,在其表面24个采样位置采集不同设备状态的多元振动序列。实验从时域、频域和时频域出发构建特征池,利用SVM-RFE对单元振动序列中各个特征进行重要性排序和初步筛选,并记录每个位置的最高故障诊断准确率。再对初步筛选出的特征利用GA算法进一步优化选择,选出多元振动序列中具有最高准确率且数量最少的特征组合。实验结果表明,该方法可以选出多元振动序列的共性特征组合,同时该组合可以确保电抗器故障诊断准确率最高且特征数目最少。
英文摘要:
      Aiming at the limitation that current feature selection algorithms are only available for univariate vibration sequence, this paper proposes a multivariate vibration sequences feature selection algorithm named SVM-RFE-GA based on support vector machine recursive feature elimination algorithm (SVM-RFE) and genetic algorithm (GA). Taking a 220 kV high voltage shunt reactor as the research object, we build a mechanical fault simulation platform, set up 5 kinds of equipment states and collect multivariate vibration sequences of different equipment states at 24 sampling positions on its surface. We construct the feature pool from the time domain, frequency domain and time-frequency domain. For single vibration sequences, we rank the features and select features preliminarily by SVM-RFE. Then, the preliminarily select features are further optimized by GA algorithm to select the feature combination with the highest accuracy and the least number. The experimental result shows that the proposed method can select the common feature combination of multivariate vibration sequences, and the combination can ensure the highest fault diagnosis accuracy and the minimum number of features.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd