• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于Stacking集成模型的台区线损率预测方法研究
Research on prediction method of line loss rate in station area based on Stacking ensemble model
Received:June 07, 2022  Revised:June 20, 2022
DOI:10.19753/j.issn1001-1390.2023.01.011
中文关键词: 智能电网  线损率预测  K-Means 聚类算法  Stacking融合学习模型  双碳目标
英文关键词: smart grid, line loss rate prediction, K-means clustering algorithm, Stacking fusion learning model, double carbon target
基金项目:南方电网有限责任公司科技项目(059300HK42210006)
Author NameAffiliationE-mail
Li Jinyuan* Information Center, Yunnan Power Grid Co., Ltd., Kunming 650217, China lijinyuan94@163.com 
Bao Fu Information Center, Yunnan Power Grid Co., Ltd., Kunming 650217, China lijinyuan94@163.com 
Hu Kai Yunnan Power Grid Co., Ltd., Kunming 650200, China lijinyuan94@163.com 
Zhang Lijuan Information Center, Yunnan Power Grid Co., Ltd., Kunming 650217, China lijinyuan94@163.com 
Hits: 2461
Download times: 385
中文摘要:
      针对现有线损率预测方法预测精度较低的问题,提出了一种将Stacking集成学习模型与改进的k-均值聚类方法相结合用于预测台区的线损率。通过聚类方法进行数据聚类,再通过Stacking集成学习模型对台区线损率进行预测。Stacking集成学习模型由XGBoost模型、梯度决策树模型和支持向量机模型构成。与传统预测方法进行对比分析试验验证可行性。结果表明,与传统的线损率预测方法相比,所提出的线损率预测方法具有更好的预测效果,更高的预测精度和拟合效果。该研究为实现电网双碳目标提供了一定的参考。
英文摘要:
      Aiming at the problem of low prediction accuracy of existing line loss rate prediction methods, a method combining Stacking ensemble learning model and improved k-means clustering method is proposed to predict the line loss rate in the station area. The data are clustered by clustering method, and the line loss rate of the station area is predicted by Stacking ensemble learning model. Stacking ensemble learning model is composed of XGBoost model, gradient decision tree model and support vector machine model. Compared with the traditional prediction methods, the feasibility is verified by experiments. The results show that compared with the traditional line loss rate prediction method, the proposed prediction method has better prediction effect, higher prediction accuracy and fitting effect. This study provides a certain reference for realizing the double carbon goal of power grid.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd