• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于参数估计的配电网载波通信异常信号识别方法
Abnormal signal identification method of distribution network carrier communication based on parameter estimation
Received:June 10, 2022  Revised:July 07, 2022
DOI:DOI: 10.19753/j.issn1001-1390.2022.10.018
中文关键词: 配电网载波通信  网络模型  异常信号采集  去噪  参数估计  分类识别
英文关键词: distribution network carrier communication, network model, abnormal signal acquisition, denoising, parameter estimation, classification and identification
基金项目:南方电网科技项目(037800HK42200044)
Author NameAffiliationE-mail
Yan Yuping* Guangdong Power Grid Co,LTD yuson_yan@163.com 
Hong Yutian Guangdong Electric Power Information Technology Co., LTD yanyuping851024@163.com 
Chen Shouming Guangdong Electric Power Information Technology Co., LTD yanyuping851024@163.com 
Wang Jianyong Guangdong Electric Power Information Technology Co., LTD yanyuping851024@163.com 
Hits: 1644
Download times: 372
中文摘要:
      为减少电力信息通信错误,实现准确调度,配电网载波通信异常信号准确识别具有重要意义。为此,提出一种基于参数估计的配电网载波通信异常信号识别方法。该方法通过建立配电网载波通信网络模型明确通信节点分布情况。再以构建的配电网载波通信网络模型为参考,在其各个节点上部署采集器,采集经过该节点的载波通信信号,并利用独立分量分析的方法实施去噪处理。利用遗传算法与分数阶傅里叶变换相结合的算法估计配电网载波通信信号参数,得出信号初始频率估计值和信号斜率估计值。最后将两种估计值组成信号特征,并以此为输入,通过分类器实现配电网载波通信异常信号识别。结果表明:与传统识别方法相比,提出方法可以更准确的对配电网载波通信异常信号进行识别,具有更高的灵敏度和特异度。
英文摘要:
      In order to reduce power information communication errors and realize accurate dispatching, it is of great significance to accurately identify abnormal signals of distribution network carrier communication. Therefore, an abnormal signal identification method of distribution network carrier communication based on parameter estimation is proposed. This method defines the distribution of communication nodes by establishing the distribution network carrier communication network model. Then, taking the constructed distribution network carrier communication network model as a reference, the collector is deployed on each node to collect the carrier communication signal passing through the node, and the independent component analysis method is utilized to denoise. The carrier communication signal parameters of distribution network are estimated by the combination of genetic algorithm and fractional Fourier transform. Finally, the two estimated values are composed of signal features, which are used as input to realize the abnormal signal identification of distribution network carrier communication through classifier. The results show that compared with the traditional identification methods, the proposed method can identify the abnormal signal of distribution network carrier communication more accurately, and has higher sensitivity and specificity.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd