• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于数据预处理和Bi-LSTM的智能电网预测方法
Smart grid forecasting method based on data preprocessing and Bi-LSTM
Received:June 11, 2022  Revised:June 27, 2022
DOI:10.19753/j.issn1001-1390.2025.06.012
中文关键词: 短期预测  数据预处理  Bi-LSTM  深度学习  时间序列
英文关键词: short-term prediction, data preprocessing, Bi-LSTM, deep learning, time series
基金项目:河北省自然科学基金资助项目(E2018502133);中央高校基本科研业务费专项资金项目(2022MS068)
Author NameAffiliationE-mail
LI Yan* North China Electric Power University yan.li@ncepu.edu.cn 
LIU Xinyue North China Electric Power University 2676550167@qq.com 
QIAO Junjie North China Electric Power University 906116296@qq.com 
WANG Maotao North China Electric Power University 2875766697@qq.com 
LIU Yifan North China Electric Power University 2273804026@qq.com 
QI Leijie North China Electric Power University 1768215768@qq.com 
Hits: 26
Download times: 9
中文摘要:
      短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory, Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。
英文摘要:
      Short-term prediction plays an important role in the construction of smart grid, and profoundly affects the intelligent transformation of all aspects of power grid generation, transmission and distribution. Short-term predictions are generally based on system measured data, while sensor failures, data transmission errors and other reasons will lead to a decline in data quality, which will seriously affect the accuracy of short-term predictions. In order to establish an accurate short-term prediction model under the condition of data quality impairment, this paper proposes a short-term prediction framework bi-directional long short-term memory data preprocessing (Bi-LSTM-DP) that combines data preprocessing and bi-directional long short-term memory (Bi-LSTM). In Bi-LSTM-DP, the acquired data first fills in the missing values by mean, then denoises the data based on the Savitzky-Golay filter, and finally uses Bi-LSTM to extract time series information to achieve short-term predictions. In order to evaluate the performance of the proposed method, the measured public data sets are used to predict the wind power generation capacity and load demand respectively, and the comparison with other reference methods shows the effectiveness and robustness of the proposed method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd