• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于广义回归神经网络的光纤光栅传感器解调技术研究
Research on demodulation technology of fiber Bragg grating sensor based on generalized regression neural network
Received:July 18, 2022  Revised:August 09, 2022
DOI:10.19753/j.issn1001-1390.2025.02.008
中文关键词: 光纤光栅  峰值检测  中心波长  粒子群优化算法  广义回归神经网络  
英文关键词: fiber Bragg grating, peak detection, central wavelength, particle swarm optimization algorithm, generalized regression neural network
基金项目:国网重点研发计划项目(2017YFB0903100);国网浙江省电力有限公司丽水供电公司研发项目(5211LS220003)
Author NameAffiliationE-mail
XIA Xiang* Lishui Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd. xiaxiang1974@163.com 
LI Xianliang Lishui Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd. xiaxiang1974@163.com 
PAN Hua Lishui Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd. xiaxiang1974@163.com 
YAN Dong Lishui Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd. xiaxiang1974@163.com 
ZHANG Xiaofeng Lishui Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd. xiaxiang1974@163.com 
ZHANG Yunhui Lishui Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd. xiaxiang1974@163.com 
Hits: 335
Download times: 106
中文摘要:
      针对现有光纤光栅传感器波长峰值检测方法存在的误差大、稳定性差等问题,提出了一种基于广义回归神经网络和改进粒子群优化算法的光纤光栅传感器波长峰值检测方法。通过改进的粒子群优化算法对广义回归神经网络的平滑因子进行寻优,提高广义回归神经网络中心波长计算的准确性。通过试验分析所提方法在不同中心波长下的性能。结果表明,所提方法比传统方法更稳定,解调误差更小,整体中心波长绝对偏差降低了35.90%和24.24%,相对波长变化偏差降低了20.00%和13.04%。
英文摘要:
      Aiming at the problems of large error and poor stability of traditional wavelength demodulation of fiber Bragg grating sensor, a wavelength peak detection method of fiber Bragg grating sensor based on generalized regression neural network and improved particle swarm optimization algorithm is proposed. Through the improved particle swarm optimization algorithm, the smoothing factor of the generalized regression neural network is optimized to improve the accuracy of the central wavelength calculation of the generalized regression neural network. The performance of the proposed method at different central wavelengths is analyzed through experiments. The results show that the proposed method is more stable than the traditional method, and the demodulation error is smaller, the absolute deviation of the overall central wavelength is reduced by 35.90% and 24.24%, and the relative wavelength variation deviation is reduced by 20.00% and 13.04%.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd