• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
改进YOLOv3模型在无人机巡检输电线路部件缺陷检测中的应用研究
Application of improved YOLOv3 model in defect detection of transmission line components in UAV patrol inspection
Received:July 18, 2022  Revised:August 10, 2022
DOI:10.19753/j.issn1001-1390.2023.05.012
中文关键词: 输电线路  无人机巡检图像  绝缘子缺陷  YOLOv3模型  注意力机制
英文关键词: transmission line, UAV patrol image, insulator defect, YOLOv3 model, attention mechanism
基金项目:南网科技项目(GZHKJXM20180112)
Author NameAffiliationE-mail
Ye Xiang* Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510080, China yexiang189@163.com 
Sun Jiaxing Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510080, China yexiang189@163.com 
Gan Yongye Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510080, China yexiang189@163.com 
Ran Qian Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510080, China yexiang189@163.com 
Wu Da Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510080, China,Guangzhou yexiang189@163.com 
Lv Zemin Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510080, China yexiang189@163.com 
Hits: 1481
Download times: 386
中文摘要:
      针对传统输电线路无人机巡检图像检测方法存在的精度低、计算时间长和训练样本少等问题,提出了一种用于输电线路部件绝缘子缺陷识别的改进YOLOv3模型。引入K-means++算法解决小目标不敏感问题,引入Focalloss函数解决样本不均衡问题,引入Mish激活函数提高模型精度,引入注意力机制Senet提高特征提取性能。通过对改进前后模型性能的比较分析,验证了该方法的优越性。结果表明,与传统的检测方法相比,所提方法在检测速度上能够满足实时检测的需要,且检测精度最优,检测时间为0.079 s,检测平均准确度均值为94.40%。该研究能够满足输电线路无人机巡检图像缺陷自动检测的需要。
英文摘要:
      Aiming at the problems of low accuracy, long calculation time and few training samples in the traditional image detection method of UAV inspection of transmission line, an improved YOLOv3 model for insulator defect identification of transmission line components is proposed. K-means++ algorithm is introduced to solve the problem of small target insensitivity, Focalloss function is introduced to solve the problem of sample imbalance, Mish activation function is introduced to improve the accuracy of the model, and Senet attention mechanism is introduced to improve the performance of feature extraction. Through the comparative analysis of the performance of the model before and after the improvement, the superiority of this method is verified. The results show that, compared with the traditional detection methods, the proposed method can meet the needs of real-time detection in terms of detection speed, and the detection accuracy is optimal. The detection time is 0.079 s, and the average detection accuracy is 94.40%. This research can meet the needs of automatic detection of image defects in transmission line UAV inspection.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd