• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
面向边缘计算的轻量级非侵入式负荷分解模型研究
Research on lightweight non-intrusive load disaggregation model for edge computing
Received:August 09, 2022  Revised:August 12, 2022
DOI:10.19753/j.issn1001-1390.2025.05.017
中文关键词: 非侵入式负荷分解  注意力机制  编解码器  边缘计算
英文关键词: non-intrusive load disaggregation, attention mechanism, encoder-decoder, edge computing
基金项目:国家自然科学基金资助项目( 61571140)
Author NameAffiliationE-mail
YeCanShen* School of Information Engineering, Guangdong University of Technology ben_ycs@qq.com 
LuoDeHan School of Information Engineering, Guangdong University of Technology dehanluo@gdut.edu.cn 
HeJiaFeng School of Information Engineering, Guangdong University of Technology jfhe@gdut.edu.cn 
Hits: 104
Download times: 216
中文摘要:
      针对目前基于深度学习的非侵入式负荷分解模型难以在计算资源有限的边缘端部署的问题,文中提出一种基于编解码器结构的轻量级非侵入式负荷分解模型。该模型通过引入注意力机制,分别计算空间注意力和改进后的通道注意力,提高负荷分解的准确性。另外,文中对不同解码器的设计进行研究,利用深度可分离卷积改进上采样层中的残差块,减少卷积层中的卷积核个数,使得模型在保证良好的负荷分解性能的同时,拥有更少的参数量和计算量。文中利用公开数据集UK-DALE进行测试,验证所提模型的负荷分解性能和在边缘端部署的可行性。
英文摘要:
      Aiming at the problem that the current non-intrusive load disaggregation model based on deep learning is difficult to deploy at the edge with limited computing resources, this paper proposes a lightweight non-intrusive load disaggregation model based on the encoder-decoder structure. The model improves the accuracy of load disaggregation by introducing attention mechanism to calculate spatial attention and the improved channel attention separately. In addition, the design of different decoders is investigated in this paper, and the depthwise separable convolution is used to improve the residual block in the upsampling layer and reduce the number of kernels in the convolution layer, so that the model has fewer parameters and requires less computation while ensuring good load disaggregation performance. Tests are conducted on the public UK-DALE dataset to verify the load disaggregation performance of the proposed model and the feasibility of edge deployment.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd