• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于概率神经网络的直流滤波器电容器开路故障定位方法
Open-circuit fault location method of DC filter capacitor based on probabilistic neural network
Received:August 10, 2022  Revised:August 16, 2022
DOI:10.19753/j.issn1001-1390.2023.01.008
中文关键词: 高压直流输电  电容器  概率神经网络  主成分分析法  开路故障定位
英文关键词: high voltage DC transmission, capacitor, probabilistic neural network, principal component analysis method, open-circuit fault location
基金项目:国家自然科学基金项目( 51977183)
Author NameAffiliationE-mail
Li Ziwei State Grid Sichuan Comprehensive Energy Service Co., Ltd., Chengdu 610072, China 3298774425@qq.com 
Xu Lijuan* School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China 15707938526@139.com 
Hits: 1205
Download times: 372
中文摘要:
      针对高压直流输电工程中直流滤波器电容器开路故障定位方法效率低、威胁检修人员的安全等问题,提出了一种基于概率神经网络的直流滤波器电容器开路故障定位方法。该方法采用主成分分析法过滤冗余的信息,既降低了数据的维度,也得到了能有效反映直流滤波器电容器运行状态的特征向量;利用概率神经网络对特征向量进行故障分类,从而实现对电容器开路故障的定位。利用直流滤波器电容器运行状态样本数据对所提定位方法的有效性进行验证,同时考虑电容器有不同的开路故障电容元件数,验证所提定位方法的适应性。实验结果表明,文章所提方法对直流滤波器电容器的开路故障位置具有较好的定位精度。
英文摘要:
      Aiming at the low efficiency of DC filter capacitor open-circuit fault location method in HVDC transmission project, which threatens the safety of maintenance personnel, a probabilistic neural network based open-circuit fault location method of DC filter capacitor is proposed. Firstly, the principal component analysis method is used to filter the redundant information, which not only reduces the dimension of the data, but also obtains the eigenvector that can effectively reflect the operating state of the DC filter capacitor. Then, the probabilistic neural network is used to classify the feature vector, so as to realize the location of capacitor open-circuit fault. The validity of the proposed location method is verified by using the sample data of DC filter capacitor operation state. Meanwhile, considering the different number of capacitor elements with open-circuit fault, the adaptability of the proposed location method is verified. The experimental results show that the proposed method has better accuracy in locating the open-circuit fault of DC filter capacitor.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd