• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
含新能源发电的电动汽车充电站充电功率在线优化策略研究
Research on on-line charging power optimization strategy for EV charging station with renewable energy generation
Received:August 12, 2022  Revised:August 22, 2022
DOI:10.19753/j.issn1001-1390.2024.02.015
中文关键词: 电动汽车  电动汽车充电站  新能源发电  充电功率在线优化  决策变量分类  微分演化算法
英文关键词: electric vehicle, EV charging station, renewable energy generation, on-line charging power optimization, decision variables classification, differential evolution algorithm
基金项目:国家自然科学基金资助项目(51967013);江西省自然科学基金资助项目(20212BAB214061)
Author NameAffiliationE-mail
ZHOU Zhuo Wiscom System Co Ltd,Nanjing 33497287@qq.com 
LU Xiang Electric Power Research Institute,State Grid Ningxia Electric Power Co,Ltd,Yinchuan Ningxia 331766457@qq.com 
LIU Haitao Electric Power Research Institute,State Grid Ningxia Electric Power Co,Ltd,Yinchuan Ningxia hetton@126.com 
QI Shenglong* Electric Power Research Institute,State Grid Ningxia Electric Power Co,Ltd,Yinchuan Ningxia 496597513@qq.com 
HAN Tao State Grid Electric Power Research Institute Co Ltd,Nanjing hantao@sgepri.sgcc.com.cn 
WANG Qing School of Information Engineering,Nanchang University,Nanchang Jiangxi wangq@ncu.edu.cn 
Hits: 1427
Download times: 262
中文摘要:
      针对含新能源发电系统的电动汽车充电站充电功率优化问题,提出了一种充电功率在线实时优化策略,依据新能源发电出力及电动汽车当前状态信息动态调整未来24 h内充电站各充电桩充电功率,该在线优化策略依据电动汽车充电负荷特点,在初始化阶段利用基于状态依赖的决策向量分类方法,降低了每次优化待优化矩阵维度;在优化过程中利用微分演化算法,分别对有效决策向量组合以及决策向量进行优化,旨在快速、准确地对充电站中各充电桩未来24 h内的充电计划进行实时优化。该优化策略对降低充电站运行成本、改善因电动车充电引起的负荷波动具有一定的参考价值。
英文摘要:
      Aiming at the charging power optimization problem of EV charging stations with renewable energy generations, an on-line optimization strategy of charging power in real time is proposed. During the optimization process, a state dependence based decision variables classification method in the initial stage is proposed to reduce the optimized matrix dimensions. In the optimization process, the differential evolution algorithm (DEA) is utilized to optimize the effective decision vector combination and decision vector respectively, by which both the quickness and accuracy can be achieved to optimize the charging plan of each charging pile in the charging station in the next 24 hours. The proposed optimization strategy has a certain reference value for reducing the charging cost and improving load fluctuation caused by EV charging.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd