• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
差分隐私数字电网调度运行数据研究
Research on smart grid dispatching operation data with differential privacy
Received:October 07, 2022  Revised:October 24, 2022
DOI:j.issn1001-1390.2025.08.008
中文关键词: 电力调度运行数据  差分隐私  K-means算法  数据中台
英文关键词: operation data of electric power dispatching center, differential privacy, K-means algorithm, data center
基金项目:南方电网公司科技项目资助 项目编号∶036000KK52200012/GDKJXM20200487,项目名称:数字能源生态环境下电网调度运行中台架构设计及关键技术研究
Author NameAffiliationE-mail
LI Shiming* Electric Power Dispatching & Control Center, Guangdong Power Grid Corporation 365419377@qq.com 
LU Jiangang Electric Power Dispatching & Control Center, Guangdong Power Grid Corporation jiangang_lu@sina.com.cn 
GUO Wenxin Electric Power Dispatching & Control Center, Guangdong Power Grid Corporation guowenxin1985@126.com 
YU Zhiwen Electric Power Dispatching & Control Center, Guangdong Power Grid Corporation yuzhiwen@gddd.csg.cn 
ZHAO Ruifeng Electric Power Dispatching & Control Center, Guangdong Power Grid Corporation 769451061@qq.com 
ZENG Kaiwen Electric Power Dispatching & Control Center, Guangdong Power Grid Corporation 976278861@qq.com 
Hits: 87
Download times: 30
中文摘要:
      针对在电力调度运行数据上进行数据分析而带来的用户隐私泄露问题,文章提出一种满足差分隐私的用户用电模式分析方法。文章对原始时序数据进行K-means聚类分析,获得划分用户用电模式的最优个数。文中提出了一种满足差分隐私的聚类分析方法,其在生成聚类簇和计算簇内质心时加入拉普拉斯噪声,之后再通过平滑函数对簇内质心数据进行降噪,提高数据可用性。在真实数据集REDD上进行算法测试。实验结果表明,该算法在分析电力调度运行数据的同时,既实现了隐私保护,又提高了隐私数据可用性。
英文摘要:
      Aiming at the problem of user privacy leakage caused by data analysis on power dispatching operation data, this paper proposes a differential privacy analysis method for the power consumption pattern of users. We use K-means clustering method on the original time series data to obtain the optimal number of the power consumption patterns of users. We propose a differential privacy clustering analysis method, which adds Laplacian noise when generating clusters and calculating the centroid within clusters, and then, de-noises the centroid data within clusters by smoothing function to improve the data availability. The algorithm is tested on real dataset REDD. The experimental results show that the proposed algorithm not only achieves privacy protection, but also improves the availability of privacy data when analyzing the operation data of power dispatching.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd