• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
改进极限学习机在FBG的光纤光栅传感器标定中的应用
Application of modified limit learning machine in FBG sensor calibration
Received:November 18, 2022  Revised:November 25, 2022
DOI:10.19753/j.issn1001-1390.2025.09.025
中文关键词: 光纤光栅  动态标定  传感系统  在线顺序极限学习机  正则化  自适应遗忘因子
英文关键词: fiber bragg grating, dynamic calibration, sensing system, online sequence extreme learning machine, regularization, adaptive forgetting factor
基金项目:国家重点研发计划项目资助(2017YFB0903100)
Author NameAffiliationE-mail
XiaXiang State Grid Zhejiang Electric Power Co., LTD. Lishui Power Supply Company xianliangli80@163.com 
ZhuLiFeng* State Grid Zhejiang Electric Power Co., LTD. Lishui Power Supply Company xianliangli80@163.com 
GeQingQing State Grid Zhejiang Electric Power Co., LTD. Lishui Power Supply Company xianliangli80@163.com 
HuangLiu State Grid Zhejiang Electric Power Co., LTD. Lishui Power Supply Company xianliangli80@163.com 
YeZhangChong State Grid Zhejiang Electric Power Co., LTD. Lishui Power Supply Company xianliangli80@163.com 
SunYongBin State Grid Zhejiang Electric Power Co., LTD. Lishui Power Supply Company xianliangli80@163.com 
Hits: 111
Download times: 65
中文摘要:
      针对实际应用中光纤光栅传感器服役时间长和工作环境恶劣等原因导致的标定曲线缓慢漂移问题,提出了一种改进在线顺序极限学习机用于光纤光栅传感系统的动态标定。在初始训练阶段引入正则化避免产生奇异矩阵,提高泛化能力。在线学习阶段引入自适应遗忘因子对新旧样本比重进行调整,提高预测精度。通过试验进行对比分析,验证了该方法的优越性。结果表明,与传统标定方法相比,所提方法的均方根误差(root mean square error, RMSE)指标始终最低,R2指标始终最高,具有较高的精度和较好的泛化性能,解决了标定曲线缓慢漂移问题,满足光纤光栅传感器的要求,可以应用于实际工程。
英文摘要:
      Aiming at the problem of slow drift of calibration curve caused by long service time and bad working environment of fiber bragg grating (FBG) sensor in practical application, an improved online sequential limit learning machine is proposed for dynamic calibration of FBG sensor system. In the initial training stage, regularization is introduced to avoid singular matrix and improve generalization ability. In the online learning stage, an adaptive forgetting factor is introduced to adjust the proportion of new and old samples to improve the prediction accuracy. The superiority of this method is verified through the comparative analysis of experiments. The results show that, compared with the traditional calibration methods, the root mean square error (RMSE) index of the proposed method is always the lowest and R2 index is always the highest, which has higher accuracy and better generalization performance. It solves the problem of slow drift of the calibration curve, meets the requirements of FBG sensors, and can be applied to practical projects.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd