• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于自组织竞争神经网络虚拟测风的分散式风电场超短期功率预测
Ultra-short term power prediction of decentralized wind farm based on self-organizing competitive neural network virtual wind measurement
Received:December 26, 2022  Revised:January 08, 2023
DOI:10.19753/j.issn1001-1390.2025.09.016
中文关键词: 风电功率  超短期预测  虚拟测风技术  自组织竞争神经网络  广义误差分布
英文关键词: wind power, ultra-short-term forecast, virtual wind measurement technology, self-organizing competitive neural network, generalized error distribution
基金项目:国家自然科学(51877174)
Author NameAffiliationE-mail
Zhangxiaobei Huaneng New Energy Co,Ltd Shaanxi branch,Shanxi xian db_zhangxiaobei@163.com 
Lirun* Eastern E-Energy BeijingCo,Ltd lirun0621@hotmail.com 
Wangzhenfu Huaneng New Energy Co,Ltd Shaanxi branch,Shanxi xian db_wangzhenfu@163.com 
xufeng Huaneng New Energy Co,Ltd Shaanxi branch,Shanxi xian db xufeng@163.com 
Songmeiyang Eastern E-Energy BeijingCo,Ltd 460074857@qq.com 
Hits: 125
Download times: 77
中文摘要:
      为充分降低分散式风电场超短期预测功率的误差,提出基于自组织竞争神经网络虚拟测风的分散式风电场超短期功率预测模型。从软硬件和数据流分析了分散式风电场功率预测系统架构,为模型建立提供基础。采用自组织竞争神经网络理论建立大型风电场的虚拟测风模型,以虚拟测风点测量数据,气温,天气类型,风向,湿度在内的预测特征集为输入数据,以超短期范围风机风速为输出数据构建网络,从而实现了基于若干个虚拟测风塔测量数据得到分散式风电场中不同风机的风速环境。进一步针对各个风机的参数数据进行广义误差分布最优化算法进行拟合,进而基于虚拟测风结果计算各个风机的超短期预测出力,通过某地区分散式风电场的超短期风电功率预测算例验证了所建立模型的有效性。
英文摘要:
      In order to fully reduce the error of ultra-short term power prediction of decentralized wind farms, a model of ultra short-term power prediction of decentralized wind farms based on self-organizing competitive neural network virtual wind measurement is proposed. The architecture of decentralized wind farm power prediction system is analyzed from the aspects of software, hardware and data flow, which provides the basis for the establishment of the model. The self-organizing competitive neural network theory is used to establish the virtual wind measurement model of large-scale wind farm. The virtual wind measurement point measurement data, temperature, weather type, wind direction, humidity and other prediction feature sets are used as input data, and the ultra-short term fan wind speed is used as output data to build the network. Thus, the wind speed environment of different fans in the decentralized wind farm is obtained based on the measurement data of several virtual wind measurement towers. Furthermore, the generalized error distribution optimization algorithm is used to fit the parameter data of each fan, and then, the ultra-short term predicted output of each fan is calculated based on the virtual wind measurement results. The validity of the proposed model is verified by an ultra-short term wind power prediction example of a regional distributed wind farm.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd