• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于变分模态分解和时间注意力机制TCN网络的光伏发电功率预测
Photovoltaic power forecasting based on TPA-TCN model and variational modal decomposition
Received:January 05, 2023  Revised:January 21, 2023
DOI:10.19753/j.issn1001-1390.2024.12.019
中文关键词: 光伏功率预测  变分模态分解  注意力机制  时间卷积网络  时间序列
英文关键词: photovoltaic power forecasting, variational modal decomposition, attention mechanism, time convolutional network, time series
基金项目:中国南方电网有限责任公司科技项目(YNKJXM20220039)
Author NameAffiliationE-mail
ZHANG Haitao* Lincang Power Supply Company, Yunnan Power Grid Co., Ltd., Lincang 677099, Yunnan, China fload_cai@163.com 
LI Wenjuan Lincang Power Supply Company, Yunnan Power Grid Co., Ltd., Lincang 677099, Yunnan, China liwjlc@163.com 
LI Xuefeng Lincang Power Supply Company, Yunnan Power Grid Co., Ltd., Lincang 677099, Yunnan, China lixf0883@sina.com.cn 
XIE Changqing Lincang Power Supply Company, Yunnan Power Grid Co., Ltd., Lincang 677099, Yunnan, China xiechangqing1986@163.com 
ZHU Qihu Lincang Power Supply Company, Yunnan Power Grid Co., Ltd., Lincang 677099, Yunnan, China zhuqihu@sina.com.cn 
XIANG Chunyong Lincang Power Supply Company, Yunnan Power Grid Co., Ltd., Lincang 677099, Yunnan, China xiangcy@163.com 
Hits: 385
Download times: 79
中文摘要:
      针对光伏系统输出功率对天气因素敏感度高,具有强波动性与高随机性等特点,综合变分模态分解和融合时间模式注意力(temporal pattern attention, TPA)机制时间卷积网络(temporal convolutional network, TCN)的优点,提出了一种基于变分模态分解的TPA-TCN网络的光伏功率预测方法。利用变分模态分解将光伏功率的时间序列数据分解成若干特征不同的模态分量,构建不同时间跨度和天气因素特征的数据子序列,实现原始时间序列数据和天气影响因素解耦;在TCN网络中引入TPA机制,通过对不同时间步长权重的合理分配,捕捉光伏功率时间序列潜在逻辑规律,对模态分解的子序列进行功率预测,并通过重构子序列预测结果实现光伏发电功率的精准预测。通过实验仿真数据表明文中方法能够有效提高光伏功率的预测精度。
英文摘要:
      Photovoltaic output power has the characteristics of strong volatility and high randomness, which is highly sensitive to weather factors. A short-term photovoltaic power prediction method combines variational modal decomposition (VMD) and temporal convolutional network (TCN) with attention mechanism is proposed in this paper. Firstly, VMD decomposition method is used to decompose the time series of photovoltaic power into several modal components with different characteristics, the sub-series data with different time spans and weather factors were constructed to realize the decoupling of the original time series data and weather factors. Secondly, TPA mechanism was introduced into the TCN network to capture the potential logic rule of photovoltaic power time series based on reasonable allocation of different time step weights. The PV power is forecasted by reconstructing the sub-sequence prediction results. Finally, the proposed method is compared with the traditional methods based on the actual operation data, the results shows that the proposed method can effectively improve the predicting accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd