• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于数据分析的新型电力系统电力智能交互平台的短文本相似性研究与应用
Research and application of short text similarity for power intelligent interaction platform in novel power system based on data analysis
Received:March 23, 2023  Revised:May 16, 2023
DOI:10.19753/j.issn1001-1390.2025.10.015
中文关键词: 智能交互  文本相似度  语义分析  自然语言处理
英文关键词: intelligent interaction, text similarity, semantic analysis, natural language processing
基金项目:国网江苏省电力有限公司孵化项目(JF2021035)
Author NameAffiliationE-mail
JING Jiangping* State Grid Jiangsu Electric Power Co, Ltd jping87@outlook.com 
ZHI Ming State Grid Taizhou Power Supply Company,Jiangsu Taizhou jping87@outlook.com 
YANG Fei State Grid Taizhou Power Supply Company,Jiangsu Taizhou jping87@outlook.com 
CUI Zhiwei State Grid Taizhou Power Supply Company,Jiangsu Taizhou jping87@outlook.com 
CHNEG Peng State Grid Taizhou Power Supply Company,Jiangsu Taizhou jping87@outlook.com 
Hits: 94
Download times: 20
中文摘要:
      文本相似性度量是电力智能交互平台上的一项基础技术。针对电力智能交互平台中长度较短,且通常不符合严格语法规则的短文本,提出一种新的文本结构相似性度量。新的度量不注重词性标注(part-of-speech,PoS)等在短文本上缺乏代表性的特征,主要强调文本的结构信息,将短文本视为词-短语-句子的三级结构,基于子结构在上层结构中的相对位置、重排代价和生成熵,从短语和句子两个级别的结构信息为短文本设计了新的特征,并结合词级别上的词向量等特征度量文本相似性。在真实语料上的实验结果验证了新的相似性度量的有效性和优势。
英文摘要:
      Measuring the text similarity is a fundamental technology in power intelligent interaction platform. In view of the short informal text which is short in length and does not conform to strict grammar rules in power intelligent interaction platform, a new text similarity estimation method is designed. Instead of depending mainly on unrepresentative features for short text including part-of-speech (PoS), the proposed measurement processes short texts on three structural hierarchies, including words, phrases and sentences. Based on position, reorder cost and generative entropy of lower-level structures in higher-level structures, new features are extracted from structural information of texts on phrase-level and sentence-level. Similarity among short text is estimated with both new features and vectorized representations on word-level. Experimental results on real-world corpus show the practicality and superiority of the proposed similarity measurement.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd