• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
面向新型电力系统N-1静态安全评估的深度时空数据驱动模型研究
Research on deep spatiotemporal data-driven model for novel power system N-1 static security assessment
Received:April 07, 2023  Revised:May 12, 2023
DOI:10.19753/j.issn1001-1390.2025.11.012
中文关键词: 深度时空数据驱动  局部气候  电力系统静态安全  薄弱点检测
英文关键词: deep spatiotemporal data driven, local climate, static safety of power system, weak point detection
基金项目:南网信息化项目(YNKJXM20220214)
Author NameAffiliationE-mail
AI Yuan* Yunnan Power Grid Co., Ltd., Kunming 650000, China liulanzh1741@163.com 
YANG Hao Yunnan Power Grid Co., Ltd., Kunming 650000, China liulanzh1741@163.com 
YANG Xiaohua Yunnan Power Grid Co., Ltd., Kunming 650000, China liulanzh1741@163.com 
ZHANG Yiming Yunnan Power Grid Co., Ltd., Kunming 650000, China liulanzh1741@163.com 
SUN Liyuan Yunnan Power Grid Co., Ltd., Kunming 650000, China liulanzh1741@163.com 
LI Jiahao Yunnan Power Grid Co., Ltd., Kunming 650000, China liulanzh1741@163.com 
Hits: 39
Download times: 19
中文摘要:
      随着电力系统中新能源和气候敏感负荷接入比例的增长,系统运行不确定性越加显著,且电力系统与气象系统间呈现复杂的非线性关系,系统N-1静态安全评估日益困难。针对该问题,提出了面向新型电力系统安全评估的深度时空数据驱动模型。文中建立了考虑局部气候的电力系统安全评估模型架构,针对不同物理系统(电气和气象)间的强非线性,采用数据挖掘技术,提出了基于深度时空数据驱动的电力系统安全评估方法;针对深度学习模型的复杂性,基于气候影响电力系统呈现局部性的先验条件,对模型进行简化并采用并行算法进行求解。以某实际电网进行仿真分析,结果表明:电力系统安全薄弱环节具有时空敏感性;考虑局部气候的深度模型可以大大提高安全评估的预测精度;模型简化和并行化可以显著提高学习效率。
英文摘要:
      With the increase of the proportion of new energy and climate-sensitive loads in power system, the uncertainty of system operation is more and more significant, and the complex nonlinear relationship between the power system and the meteorological system is presented, so the N-1 static security assessment of the system is increasingly difficult. To solve this problem, this paper proposes a deep spatiotemporal data-driven model for security assessment of novel power system. A power system security assessment model framework considering local climate is established, and then according to the strong nonlinearity between different physical systems (electrical and meteorological), a power system security assessment method based on deep spatiotemporal data-driven is proposed using data mining technology. In view of the complexity of the deep learning model, based on the prior condition that the climate affects the locality of the power system, the model is simplified and solved using parallel algorithms. An actual power grid is simulated and analyzed. The results show that the weak links of power system security are time-sensitive; the depth model considering local climate can greatly improve the prediction accuracy of safety assessment; model simplification and parallelization can significantly improve learning efficiency.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd