• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑高比例风电波动的多注意力TCN 电价预测方法
A multi-attention TCN based electricity price forecasting method considering high proportion of wind power fluctuation
Received:June 12, 2023  Revised:July 27, 2023
DOI:10.19753/j.issn1001-1390.2025.03.017
中文关键词: 电价预测  风电功率波动  发电成本  时间卷积网络  多头注意力机制
英文关键词: electricity price forecasting, wind power fluctuations, power generation cost, time convolutional network, multi-attention mechanism
基金项目:国网山东省电力公司科技项目资助(520607210007).
Author NameAffiliationE-mail
LI Zikai Linyi Power Supply Company, State Grid Shandong Electric Power Company, Linyi 276002, Shandong, China li_zk123@163.com 
YANG Bo* Linyi Power Supply Company, State Grid Shandong Electric Power Company, Linyi 276002, Shandong, China yang_bo2022_123@163.com 
ZHOU Zhongtang Linyi Power Supply Company, State Grid Shandong Electric Power Company, Linyi 276002, Shandong, China zhou_zt123@163.com 
LI Xin Linyi Power Supply Company, State Grid Shandong Electric Power Company, Linyi 276002, Shandong, China li_x123@163.com 
CHEN Fengwei Linyi Power Supply Company, State Grid Shandong Electric Power Company, Linyi 276002, Shandong, China cheng_fw123@163.com 
JIAI Runhai School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China runhaijiao@ncepu.edu.cn 
Hits: 280
Download times: 103
中文摘要:
      在风电占比较高的电力系统中,风电的强波动性使得短期内的供需形势发生剧烈变化,增加了电价的不确定性和预测难度。文中分析了电价的周期性特点,重点研究了风电波动性对电价波动的影响,利用负荷和风电功率构造了一种能够表征其他高成本发电方式对电价影响的新特征;然后将注意力机制与时间卷积网络结合,建立了双层多头自注意力时间卷积网络来挖掘电价时序规律以及外部因素对电价的影响作用;通过北欧电力市场真实数据进行预测效果验证,结果表明文中方法与现有电价预测方法相比将平均绝对误差(mean absolute error, MAE)值降低约45%。
英文摘要:
      In power system with a high proportion of wind power, the strong volatility of wind power causes drastic variations in the short-term balance of supply and demand, which increases the uncertainty of electricity prices and the difficulty of electricity price forecasting. This paper analyzes the cyclical characteristics of electricity prices, focusing on the impact of wind power fluctuations on electricity prices. Using load and wind power, a new feature is constructed to characterize the impact of variations in electricity generation capacity of other high-cost power generation methods on electricity prices. By combining attention mechanism with time convolutional network, a double-layer multi-head self-attention time convolutional network is established to explore the temporal patterns of electricity prices and the impact of external factors on electricity prices. The forecasting effect is validated using actual data from the Nordic electricity market, and the results indicate that the proposed method reduces the MAE value by approximately 45% compared to existing electricity price forecasting methods.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd