• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
面向新型电力系统的电能质量扰动分类研究
Research on classification of power quality disturbance in novel power system
Received:June 27, 2023  Revised:July 12, 2023
DOI:10.19753/j.issn1001-1390.2025.11.013
中文关键词: 联邦学习  原型学习  电能质量扰动分类  异构数据
英文关键词: Federated learning, prototype learning, classification of power quality disturbances, heterogeneous data
基金项目:国网山东省电力公司科技项目(520633220001)
Author NameAffiliationE-mail
LI Cong cong Marketing Service Center (Measurement Center), State Grid Shandong Electric Power Company, Jinan 250000, China coco_0209@163.com 
WANG Qing* Marketing Service Center (Measurement Center), State Grid Shandong Electric Power Company, Jinan 250000, China 1799726266@qq.com 
JING Zhen Marketing Service Center (Measurement Center), State Grid Shandong Electric Power Company, Jinan 250000, China 32194587@qq.com 
ZHANG Zhi Marketing Service Center (Measurement Center), State Grid Shandong Electric Power Company, Jinan 250000, China zhangzhi@sd.sgcc.com.cn 
WANG Pingxin Marketing Service Center (Measurement Center), State Grid Shandong Electric Power Company, Jinan 250000, China 510339196@qq.com 
YANG Linlin School of Measurement and Communications Engineering, Harbin University of Science and Technology, Harbin 150080, China 2120610125@stu.hrbust.edu.cn 
Hits: 49
Download times: 24
中文摘要:
      针对新型电力系统下的电能质量扰动存在信号种类复杂以及数据异构的问题,提出一种使用联邦学习和原型学习相结合的电能质量扰动分类方法。该方法包含服务器和参与方两类工作节点,服务器收集来自参与方的本地模型输出的本地原型。而本地原型不能被反向重构得到原始数据,故用服务器聚合本地原型进而获得全局原型,并发送回参与方,以正则化本地的模型训练。相较于卷积神经网络模型,该方法不需要大量的训练数据,且模型不易受到轻微的异构数据扰动,对未知的扰动信号具有较强的鲁棒性。仿真实验结果表明,与现有方法相比,所提出方法适用于小规模的电能质量扰动样本,分类准确率达到0.998 3,在新型分布式电网环境下具有较高的应用价值。
英文摘要:
      Aiming at the problems of complex signal types and heterogeneous data of power quality disturbance in novel power system, a power quality disturbance classification method using Federated learning and prototype learning is proposed. This method includes two types of work nodes: server and client. The server collects the local prototype output from the local model of clients. The local prototype cannot be reverse reconstructed to get the original data. Instead, the server aggregates the local prototype to get the global prototype and sends it back to the client to regularize the local model training. Compared with the convolutional neural network model, this method does not require a lot of training data, and the model is not vulnerable to slight heterogeneous data disturbance, and has strong robustness to unknown disturbance signals. The simulation experimental results show that, compared with existing methods, the proposed method is suitable for small-scale power quality disturbance samples, with a classification accuracy of 0.998 3, which has high application value in the new distributed power grid environment.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd