• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多源信息融合告警的微电网故障定位方法研究
Research on fault location method for microgrid based on multi-source information fusion alarm
Received:September 01, 2023  Revised:October 05, 2023
DOI:10.19753/j.issn1001-1390.2025.06.005
中文关键词: 故障定位  微电网故障告警  多源信息融合  二进制量子粒子群  卷积神经网络
英文关键词: fault location, microgrid fault alarm, multi-source information fusion, quantum-behaved particle swarm optimization with binary encoding, convolutional neural network
基金项目:国网湖北省电力有限公司重大科技项目(521532220005)
Author NameAffiliationE-mail
YANG Zhichun Electric Power Research Institute, State Grid Hubei Electric Power Co, Ltd yangzhichun3600@163.com 
LI Muyuan College of New Energy, Harbin Institute of Technology at Weihai) limuyuanee@163.com 
HAN Ji* College of New Energy, Harbin Institute of Technology at Weihai) hanji@hit.edu.cn 
YANG Fan Electric Power Research Institute, State Grid Hubei Electric Power Co, Ltd yangf_82@163.com 
SHEN Yu Electric Power Research Institute, State Grid Hubei Electric Power Co, Ltd totoshenyu@163.com 
MIN Huaidong Electric Power Research Institute, State Grid Hubei Electric Power Co, Ltd m13164602287@163.com 
Hits: 23
Download times: 7
中文摘要:
      针对故障诊断数据来源单一导致结果抗噪性和鲁棒性差问题,文章提出一种融合多源告警信息的微电网继电保护故障定位方法。基于对称分量法对微电网故障进行建模,通过求解正、负序网络微分方程,实现对短路故障的特性分析。采用相似性计算对数据进行处理并进行可视化,通过卷积神经网络对故障信息进行辨识,实现告警信息智能生成。采用开关函数法对多源告警信息进行加权融合,并采用改进二进制量子粒子群算法对故障模型进行求解。最后,在改进IEEE 33系统中进行了算例分析,结果表明,所提方法能够准确生成故障告警信息并快速定位故障,且在多点信息畸变下仍具有较高的定位精度效果。
英文摘要:
      In order to address the issues of poor noise resistance and robustness resulting from a single source of fault diagnosis data, this paper proposes a method for fault location in micro-grid relay protection that integrates multiple sources of alarm information. The faults in the micro-grid are modeled using the symmetrical component method, and the characteristics of short-circuit faults are analyzed by solving the positive and negative sequence network differential equations. Similarity computation is used to process and visualize the data, and convolutional neural network (CNN) is employed to identify the fault information, thereby achieving intelligent generation of alarm information. The switch function method is utilized to weight and fuse the multiple sources of alarm information, and an improved quantum-behaved particle swarm with binary encoding (IBQPSO) is applied to solve the fault model. Finally, a case study is conducted in an improved IEEE 33 system. The results show that the proposed method can accurately generate micro-grid fault alarm information and quickly locate the faults, with high positioning accuracy even under conditions of multiple point information distortion.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd