• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进随机森林算法的电能计量检测异常研究
Research on anomaly detection of power metering based on improved random forest algorithm
Received:October 16, 2023  Revised:November 05, 2023
DOI:10.19753/j.issn1001-1390.2025.11.007
中文关键词: 主元成分分析  随机森林  梯度提升决策树  异常用电
英文关键词: principal component analysis, random forest, gradient to improve upgrade the decision tree, abnormal power consumption
基金项目:国家电网公司总部科技项目(52094022001Q)
Author NameAffiliationE-mail
ZHU Zheng* Customer Service Center, State Grid Shanghai Municipal Electric Power Company, Shanghai 200300, China 13655192164@163.com 
XU Yukun Customer Service Center, State Grid Shanghai Municipal Electric Power Company, Shanghai 200300, China xuyukunn@163.com 
JIANG Chao Customer Service Center, State Grid Shanghai Municipal Electric Power Company, Shanghai 200300, China 107633120@qq.com 
LIU Chang Customer Service Center, State Grid Shanghai Municipal Electric Power Company, Shanghai 200300, China 806421338@qq.com 
Hits: 48
Download times: 27
中文摘要:
      电力用户异常用电是导致线损率居高不下、供电企业供电成本增加的最主要因素。因此,在智能电网建设、高级量测体系(advanced metering infrastructure,AMI)发展、智能电能表普及的当前局势下,选用先进的检测算法实现电力用户异常用电的有效检测,成为了国内外学者关注的重点。文章构建了基于RF-GBDT的异常用电融合检测模型。通过数据清洗、缺失值填补对原始数据集进行数据预处理,选用主元成分分析(principal component analysis,PCA)、Pearson相关系数法对原始数据进行降维处理、特征相关性分析,通过随机森林(random forest,RF)算法随机选取建模数据集以及数据特征量,得到成熟的分类器,最后将特征量输入梯度提升决策树(gradient boosting decision tree,GBDT),完成对测试数据集的检测分类。实验结果表明基于RF-GBDT的融合检测模型具有更好的识别速度,更高的检测精度。
英文摘要:
      The abnormal power consumption of power users is the main factor that leads to the high line loss rate and the increase of power supply cost of power supply enterprises. Therefore, under the current situation of smart grid construction, the development of advanced metering infrastructure (AMI) and the popularization of smart electricity meters, how to select advanced detection algorithm to realize the effective detection of abnormal power consumption of power users has become the focus of scholars at home and abroad. On this basis, an abnormal electricity fusion detection model based on RF-GBDT is constructed. In this scheme, data cleaning and missing value filling are used to preprocess the original data set, principal component analysis (PCA) and Pearson correlation coefficient method are used to reduce the dimension of the original data, and feature correlation analysis. The random forest (RF) algorithm is used to randomly select the modeling data set and data feature quantity to obtain a mature classifier. Finally, the feature quantity is input into the gradient to improve upgrade the decision tree (GBDT) to complete the detection and classification of the test data set. The experimental results show that the fusion detection model based on RF-GBDT has better recognition speed and higher detection accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd