• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进YOLOv5模型的智能变电站目标违规行为检测方法研究
Research on intelligent substation target violation detection method based on improved YOLOv5 model
Received:January 02, 2024  Revised:February 05, 2024
DOI:10.19753/j.issn1001-1390.2024.08.024
中文关键词: 智能变电站  智能巡检  YOLOv5模型  违规行为  注意力机制CBAM
英文关键词: intelligent substation, intelligent inspection, YOLOv5 model, violation behavior, attention mechanism CBAM
基金项目:南网科技项目 (JY-OO-01-ZC-21-006-TQ)
Author NameAffiliationE-mail
JIN Xin China Southern Power Grid Digital Power Grid Research Institute Co., Ltd., Huangpu 510530, Guangdong, China chenglingsen1976@163.com 
CHENG Lingsen China Southern Power Grid Digital Power Grid Research Institute Co., Ltd., Huangpu 510530, Guangdong, China chenglingsen1976@163.com 
ZHAO Liang China Southern Power Grid Digital Power Grid Research Institute Co., Ltd., Huangpu 510530, Guangdong, China chenglingsen1976@163.com 
LU Mingxiang China Southern Power Grid Digital Power Grid Research Institute Co., Ltd., Huangpu 510530, Guangdong, China chenglingsen1976@163.com 
ZHAO Huichao China Southern Power Grid Digital Power Grid Research Institute Co., Ltd., Huangpu 510530, Guangdong, China chenglingsen1976@163.com 
Hits: 599
Download times: 139
中文摘要:
      针对目前智能变电站安全智能巡视方法巡视效率低和所耗时间长等问题,在视频监测系统的基础上,提出了一种改进的YOLOv5模型用于智能变电站目标违规行为检测。引入K-means++算法解决小目标不敏感问题,引入注意力机制(convolutional block attention module, CBAM)提高小目标特征占比,引入alpha-IoU损失函数增强对小数据集的鲁棒性。为了验证所提模型的适应性和优越性,对其进行试验分析。结果表明,所提方法与常规方法相比,在多种目标行为检测中具有较高的检测性能,检测准确率为93.80%,检测速度为32.6 FPS,满足智能变电站对目标违规行为检测要求。可为智能变电站无人值守提供一定的参考。
英文摘要:
      In response to the problems of low efficiency and long time consumption in current intelligent substation safety inspection methods, an improved YOLOv5 model is proposed for detecting target violations in intelligent substations based on video monitoring systems. The K-means++ algorithm is introduced to solve the problem of small target insensitivity, the attention mechanism CBAM is introduced to improve the proportion of small target features, and the alpha IoU loss function is introduced to enhance the robustness to small data sets. To verify the adaptability and superiority of the proposed model, experimental analysis is conducted. The results indicate that, compared with conventional methods, the proposed method has higher detection performance in multiple target behavior detection, with a detection accuracy rate of 93.80%, and the detection speed of 32.6 FPS, meeting the requirements of intelligent substations for target violation behavior detection. It can provide a certain reference for unmanned intelligent substations.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd