• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
面向新型电力系统智能化提效的多源异构数据融合技术研究
Research on multi-source heterogeneous data integration technology for smart efficiency improvement in new-type power systems
Received:January 16, 2024  Revised:January 30, 2024
DOI:10.19753/j.issn1001-1390.2024.11.015
中文关键词: 电力数据  智能电表  多源数据融合  高斯过程
英文关键词: power grid data  smart meter  multi-source data integration  Gaussian process
基金项目:国家电网有限公司科技项目“基于外部数据的客户档案质量提升关键技术研究”(SGSJ0000FXJS2100085)
Author NameAffiliationE-mail
Li Gaoyang* Big Date Center of State Grid Corporation of China dsjzx5678@163.com 
Wang Ning Big Date Center of State Grid Corporation of China dsjzx5678@163.com 
Gao Ruotian Big Date Center of State Grid Corporation of China dsjzx5678@163.com 
Wang Bo State Grid Ningxia Electric Power Co., Ltd. Wuzhong Power Supply Company dsjzx5678@163.com 
Yin Zenan Big Date Center of State Grid Corporation of China dsjzx5678@163.com 
Zhu Manting Big Date Center of State Grid Corporation of China dsjzx5678@163.com 
Hits: 918
Download times: 154
中文摘要:
      新型智能计量设备采集的异构数据揭示了电网系统内部各构件,以及电网及其他智慧城市系统间的互动关系。针对结合多种数据进行关联分析的场景,提出一种面向多源异构数据的数据融合方法。该方法基于时域-空域的高斯过程模型,并通过层次化的贝叶斯方法简化求解。模型结合电力数据及外部数据,实现对电网缺失数据的信息补充,从而提升电网系统智能化任务的性能。以电网的负荷预测这一典型任务为例,验证了该方法在实际场景中的应用潜力。
英文摘要:
      The heterogeneous data collected by the new smart metering devices reveal the interaction between components within the power grid system and other smart city systems. To address the scenario of correlating multiple data sources, a data fusion method for heterogeneous data sources is proposed. This method is based on a spatio-temporal Gaussian process model and utilizes a hierarchical Bayesian approach for simplified inference. By combining power data with external data, the model supplements missing data in the power grid, thereby improving the performance of intelligent tasks in the power grid system. The application potential of this method in practical scenarios is demonstrated using the example of load forecasting in the power grid.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd