• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于非侵入式负荷监测的居民侧灵活性资源评估方法
Assessment method of residential-side flexibility resources based on non-intrusive load monitoring
Received:February 18, 2024  Revised:March 31, 2024
DOI:10.19753/j.issn1001-1390.2024.06.020
中文关键词: 非侵入式负荷监测  时域卷积网络  门控循环单元  灵活性资源评估
英文关键词: non-intrusive load monitoring, time-domain convolutional networks, gated cyclic units, flexibility resource assessment
基金项目:国家自然科学基金项目(No. 51907097)
Author NameAffiliationE-mail
LI Junnan Marketing Service Center, State Grid Henan Electric Power Company junnanli1991@163.com 
HE Xinming Marketing Service Center, State Grid Henan Electric Power Company 1020357515@qq.com 
ZHOU Huijuan Marketing Service Center, State Grid Henan Electric Power Company 274373903@qq.com 
XIAO Yujian School of Electrical Engineering, Sichuan University xyj2228978861@163.com 
LIU Yunfei School of Electrical Engineering, Sichuan University 2411943501@qq.com 
ZHAO Wenwen School of Electrical Engineering, Sichuan University 1243338578@qq.com 
ZANGTianlei* School of Electrical Engineering, Sichuan University zangtianlei@126.com 
Hits: 775
Download times: 225
中文摘要:
      居民用户具备巨大的灵活性潜力,充分挖掘并合理利用居民侧灵活性资源有助于提升电网的灵活性。文章利用低频功率数据和深度学习模型,提出了一种基于非侵入式负荷监测的居民侧灵活性资源评估方法。文中采用功率波动-跳变事件检测算法,实现对电器用电事件的定位和功率数据获取。将时域卷积网络(time convolutional networks,TCN)和门控循环单元(gated recurrent unit,GRU)相结合,借助TCN的数据特征提取能力和GRU的非线性拟合能力,构建TCN-BiGRU负荷识别算法,以有效区分不同电器的用电负荷。利用负荷识别结果对用户总功率信号进行分解,建立设备状态矩阵、设备概率矩阵和设备习惯使用区间矩阵,获取各个电器的用电信息,分析用户用能行为,得到居民侧灵活性资源评估详细结果。通过实际居民用户数据,验证了所提方法的实际有效性。基于所提方法所得的灵活性资源评估结果可为居民需求侧响应提供辅助决策。
英文摘要:
      Residential users have huge flexibility potential, and the full exploiting and reasonable utilizing residential-side flexibility resources can help to improve the flexibility of the power grid. In this paper, an assessment method of residential-side flexibility resources based on non-intrusive load monitoring is proposed through using low-frequency power data and deep learning models. A power fluctuation-skipping event detection algorithm is used to realize the localization of appliance power events and power data acquisition. Time convolutional networks (TCNs) and gated recurrent units (GRUs) are combined to construct a TCN-BiGRU load recognition algorithm with the help of the data feature extraction capability of TCNs and the nonlinear fitting capability of GRUs to efficiently differentiate the electricity loads of different appliances. The load identification results are used to decompose the total power signal of users, establish the equipment state matrix, equipment probability matrix and equipment habitual use interval matrix, obtain the power consumption information of each appliance, analyze the energy consumption behavior of users, and obtain the detailed results of the flexibility resource assessment on the residential side. The practical effectiveness of the proposed method is verified by actual residential user data. The flexibility resource assessment results obtained based on the proposed method can provide auxiliary decision-making for residential demand-side response.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd