• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于融合可靠性预计的电能表可靠性Bayes评估方法研究
Research on Bayes assessment method of electricity meter reliability integrating reliability prediction
Received:February 28, 2024  Revised:April 24, 2024
DOI:10.19753/j.issn1001-1390.2024.10.028
中文关键词: 可靠性工程  Bayes  电能表可靠性预计  稀疏故障可靠性评估
英文关键词: reliability engineering, Bayes, electricity meter reliability prediction, sparse fault reliability assessment
基金项目:国网公司总部科技项目(5700-202316623A-3-2-ZN)
Author NameAffiliationE-mail
Wang Qing* Marking Service Center (Metering Cente), State Grid Shandong Electric Power Company 1799726266@qq.com 
Wang Pingxin Marking Service Center (Metering Cente), State Grid Shandong Electric Power Company 15665786590@163.com 
Wang Tingting Shandong Zhongshi Yitong Group Co , Ltd wangtingting825@163.com 
Zhang Qiao Marking Service Center (Metering Cente), State Grid Shandong Electric Power Company 15964205978@126.com 
Zhu Hongxia Marking Service Center (Metering Cente), State Grid Shandong Electric Power Company 826359738@qq.com 
Hits: 450
Download times: 191
中文摘要:
      利用典型环境试验基地小子样、稀疏故障数据准确评估电能表可靠性是当前研究的难点与热点。文中以典型环境下电能表可靠性预计结果作为先验信息,结合试验故障数据,提出融合可靠性预计的电能表可靠性Bayes评估方法。基于IEC 62380标准对典型环境剖面下电能表元器件进行可靠性预计,从而基于元器件与系统可靠性逻辑关系预计电能表可靠性,采用Monte-Carlo的方式构建电能表寿命分布参数的先验分布,采用矩等价的方式确定超参数,通过Bayes定理计算电能表可靠性测度Bayes后验分布,得出可靠性寿命点估计与置信限。研究结果对小子样条件下典型环境电能表可靠性验证具有参考价值。
英文摘要:
      Using small sub-sample and sparse fault data from typical environmental test bases to assess the reliability of the electricity meter is the difficulty and hot spot of the current research. This paper proposes a Bayesian assessment method of electricity meter reliability by integrating the reliability estimation with the reliability prediction results of electricity meters in typical environment as a priori information, and combining with the test failure data. Firstly, based on IEC62380, the reliability of components under typical environment profile is expected, the reliability of electricity meter is expected based on the logical relationship between components and system reliability, and then, the a priori distribution of electricity meter life distribution parameters is constructed by adopting Monte-Carlo and pivot quantities, and the hyper-parameters are determined by adopting the method of moments equivalence to construct the a posteriori distribution of the life distribution parameters of the electricity meter. The Bayes point estimates and confidence limits of the reliability measure are calculated. The results of the study are of reference value for the verification of energy meter reliability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd