• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑新能源接入下的配电网线损综合检测方法
A comprehensive detection method for distribution network line loss considering the integration of new energy source
Received:March 19, 2024  Revised:April 07, 2024
DOI:10.19753/j.issn1001-1390.2024.09.019
中文关键词: 新能源配储  用户侧  场景缩减  储能动态寿命
英文关键词: renewable energy storage configuration, user-side, scenario reduction, dynamic life of energy storage
基金项目:南方电网科技项目(编号 YDKJ23030064)
Author NameAffiliationE-mail
WU Ruobing* Information Center,Yunnan Power Grid company,Yunnan,Kunming,650000 wuruob1990@163.com 
ZHANG Zhengchao China zzc911104@126.com 
Hits: 457
Download times: 164
中文摘要:
      双碳目标的提出,促进了电网朝着清洁低碳和安全可控等方向发展,线损是节能减排的直接体现和重要技术指标,针对现有配电网线损异常检测方法存在的检测精度差和效率低等问题,在线损异常检测系统的基础上,提出了一种结合灰色关联分析、改进K-means算法和孤立森林算法的配电网线损异常检测方法。通过灰色关联分析和改进K-means算法优化孤立森林算法,灰色关联分析完成特征属性的筛选,改进K-means算法完成数据聚类处理,提高了孤立森林算法异常检测的准确率和效率。结果表明,所提方法与常规方法相比,在多项指标上具有最优的检验效果,检验精度达到100%,平均检测时间为0.0402s,为双碳目标实现提供了一定的支持。
英文摘要:
      In order to accurately measure the abnormal situation of distribution network line loss and ensure the stable operation of the distribution network economy, a distribution network line loss anomaly detection method combining grey correlation analysis, improved K-means algorithm, and isolated forest algorithm is proposed based on the existing line loss anomaly detection methods, which have problems such as poor detection accuracy and low efficiency. Optimize the isolated forest algorithm through grey correlation analysis and improved K-means algorithm, complete feature attribute screening through grey correlation analysis, and complete data clustering processing through improved K-means algorithm, the accuracy and efficiency of anomaly detection in the isolated forest algorithm are improved. The results show that the proposed method has the best testing effect on multiple indicators compared to conventional methods, with a testing accuracy of 100% and an average detection time is 0.0402 seconds, providing certain support for achieving the carbon peaking and carbon neutrality goals.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd