• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于智慧计量实验室的多源异构检测数据智能提取技术研究
Research on intelligent extraction technology of multi-source heterogeneous detection data based on intelligent metrology laboratory
Received:April 14, 2024  Revised:May 06, 2024
DOI:10.19753/j.issn1001-1390.2024.08.009
中文关键词: 智慧计量实验室  多源异构数据  智能提取  深度学习
英文关键词: intelligent metrology laboratory, multi-source heterogeneous data, intelligent extraction, deep learning
基金项目:国家电网公司科技项目(5700-202155206A-0-0-00)
Author NameAffiliationE-mail
ZHENG Angang China Electric Power Research Institute, Beijing 100192, China zhengangang@epri.sgcc.com.cn 
ZHANG Tianyi* China Electric Power Research Institute, Beijing 100192, China tianyizhangcepri@163.com 
YANG Yubo China Electric Power Research Institute, Beijing 100192, China yangyubo@epri.sgcc.com.cn 
SHANG Huaiying China Electric Power Research Institute, Beijing 100192, China shanghuaiyingip@163.com 
REN Yi China Electric Power Research Institute, Beijing 100192, China renyi1207@126.com 
Hits: 432
Download times: 151
中文摘要:
      文章在解决智慧计量实验室中多源异构检测数据的提取与处理问题,对计量实验室检测数据类型和异构类信息提取面临的问题进行分析,提出基于图像处理的检测数据提取技术路线;设计了一种基于可微分二值化网络(differentiable binarization networks, DBNet)和卷积循环神经网络(convolutional recurrent neural network, CRNN)的检测数据智能提取技术,实现了对多源异构数据的自动检测、识别和提取。在此基础上,研制了多源异构检测数据智能提取装置,并进行了验证,结果表明,该装置能够有效地提取纸质报告或表单中的检测数据等关键信息,具有较高的准确性和较快的响应速度,为智慧计量实验室的数据管理和分析提供了有力支持。该研究对于推动智慧计量实验室的建设和试验检测数据应用具有重要意义
英文摘要:
      This paper aims to address the extraction and processing issues of multi-source heterogeneous detection data in smart metrology laboratories. It starts by analyzing the types of metrological detection data and the problems faced by the extraction of heterogeneous class information, proposing a detection data extraction technique based on image processing. Subsequently, an intelligent extraction technique for detection data based on differentiable binarization network (BDNet) and convolutional recurrent neural network (CRNN) is designed, achieving the automatic detection, recognition, and extraction of multi-source heterogeneous data. On this basis, a multi-source heterogeneous detection data intelligent extraction device was developed and verified. The results show that the device can effectively extract key information such as detection data from paper reports or forms, with high accuracy and rapid response speed, providing strong support for data management and analysis in smart metrology laboratories. This research is of significant importance for promoting the construction of smart metrology laboratories and the application of experimental detection data.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd