• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进孤立森林的电力系统碳交易数据异常检测
Anomaly detection for carbon trading data in power system based on improved isolation forest method
Received:September 19, 2024  Revised:October 23, 2024
DOI:10.19753/j.issn1001-1390.2025.06.024
中文关键词: 电力系统  碳资产  数据归集  异常检测
英文关键词: power system, carbon asset, data aggregation, anomaly detection
基金项目:国家电网有限公司总部管理科技项目(5700-202312315A-1-1-ZN )
Author NameAffiliationE-mail
ZHANG Xu* State Grid Tianjin Electric Power Company,China zhangx19821@163.com 
WANG Xudong State Grid Tianjin Electric Power Company,China zhangx19821@163.com 
HE Xin State Grid Information Telecommunication Group Co,Ltd China zhangx19821@163.com 
WANG Lin State Grid Tianjin Electric Power Company,China zhangx19821@163.com 
FENG Quehe State Grid Information Telecommunication Group Co,Ltd China zhangx19821@163.com 
LIU Bin State Grid Information Telecommunication Group Co,Ltd China zhangx19821@163.com 
Hits: 26
Download times: 6
中文摘要:
      随着我国电力系统碳资产交易机制的逐步完善,交易日趋活跃,碳资产交易种类和数据量的快速增加为碳资产运营部门的数据归集和管理等带来了挑战。为了提高运营部门对碳资产归集数据的管理效率,文中研究了基于改进孤立森林算法的多源碳资产归集数据异常检测方法。文中论述了交易中常见的多源碳资产类型和归集数据的特点,提出了基于互信息分割归集数据维度的孤立树构建方法,旨在依据相关性分割维度以降低孤立树的数据维度并提高计算结果的平稳性,进而提高算法的计算效率。实验结果表明,所述改进方法在碳资产归集数据异常值检测中具有更好的检测效率。
英文摘要:
      With the improvement of carbon asset trading mechanism in China, trading has become increasingly active. The rapid increase of carbon asset types and data volume from trading has brought challenges to data aggregation and management of carbon asset operation departments. In order to improve the management efficiency, this paper studies an anomaly detection method for multi-source carbon assets aggregation data based on improved isolation forest algorithm. Types of multi-source carbon assets and the characteristics of aggregation data are discussed. Mutual information-based segmentation of aggregation data is proposed to construct the isolation tree, aiming to reduce data dimension of isolation tree and improve the stability of calculation result, thereby improving the computational efficiency of the algorithm. Experimental results indicate that the proposed improved method has higher efficiency in anomaly detection for carbon assets aggregation data.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd