• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
导线覆冰脱冰响应及脱冰高度预测模型研究
Research on response of conductor icing and de-icing and prediction model of de-icing height
Received:September 24, 2024  Revised:December 24, 2024
DOI:j.issn1001-1390.2025.08.009
中文关键词: 输电塔线  有限元分析  冰覆盖分析  动态响应  脱冰高度预测
英文关键词: transmission tower line, finite element analysis, ice coating analysis, dynamic response, ice shedding height prediction
基金项目:国网山西省电力公司科技项目(520530220003)
Author NameAffiliationE-mail
LI Jinsong* State Grid Shanxi Electric Power Research Institute 635389007@qq.com 
WANG Shuai State Grid Shanxi Electric Power Research Institute 2455945516@qq.com 
GUAN Shaoping State Grid Shanxi Electric Power Company 15150604207@163.com 
LU Maochun State Crid Shanxi Electric Power Research Institute 2481003488@qq.com 
YUAN Hui State Crid Shanxi Electric Power Research Institute 31841993l@qq.com 
YU Hua State Crid Shanxi Electric Power Research Institute 1508417029@qq.com 
Hits: 85
Download times: 27
中文摘要:
      文中研究旨在探讨线路脱冰对输电线路动力学的影响、导线覆冰脱冰响应及脱冰高度预测模型研究。基于Abaqus有限元分析软件,构建考虑风载荷的输电塔线系统模型,通过五种不同情况的实验,分析档距、高差、冰厚度、脱冰率等关键参数对最大脱冰高度的影响,基于卷积神经网络-多头自注意力(convolutional neural networks-multi-head self-attention, CNN-MHAM)网络构建输电线路脱冰跳跃高度预测模型,使用实验室实验数据与实际工况采集数据进行模型训练。最后,通过仿真验证所提线路脱冰高度预测模型与实际数据平均相对误差小于3%。所提研究为输电线路覆冰区域的绝缘间隙设计提供参考依据。
英文摘要:
      This paper aims to investigate the impact of wire de-icing on the dynamics of transmission lines, response of conductor icing and de-icing and prediction model of de-icing height. Initially, a transmission tower-line system model incorporating wind loads is developed using Abaqus finite element analysis software. Subsequently, experiments under five different conditions are conducted to analyze the effects of critical parameters such as span length, height difference, ice thickness, and de-icing rate on the maximum de-icing height. A convolutional neural network and multi-head self-attention (CNN-MHAM)-based model is then constructed to predict the jumping height of conductors following ice shedding, with the model trained using both laboratory experimental data and field-collected data. Simulation validation demonstrates that the proposed de-icing height prediction model achieves an average relative error of less than 3% when compared with actual data. This study provides valuable insights for designing the insulation clearance of transmission lines in icing-prone areas.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd