• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于高性能神经网络的配电网自主故障定位算法研究
Research on Autonomous Fault Location Algorithm for Distribution Network Based on High Performance Neural Network
Received:October 08, 2024  Revised:October 23, 2024
DOI:
中文关键词: 高性能神经网络  配电网  故障电流信号  特征提取  自主故障定位算法
英文关键词: High performance neural networks  Distribution network  Fault current signal  Feature extraction  Autonomous fault location algorithm
基金项目:中国南方电网有限责任公司科技项目 (GDKJXM20230751)
Author NameAffiliationE-mail
MAI Jiayi* Zhuhai Power Supply Bureau,Guangdong Power Co.,Ltd.,Zhuhai,519075 China houzufeng198508@163.com 
HOU Zufeng Zhuhai Power Supply Bureau,Guangdong Power Co.,Ltd.,Zhuhai,519075 China houzufeng198508@163.com 
LIANG Yuan Zhuhai Power Supply Bureau,Guangdong Power Co.,Ltd.,Zhuhai,519075 China liangy0990@163.com 
LIU Moujun Zhuhai Power Supply Bureau,Guangdong Power Co.,Ltd.,Zhuhai,519075 China lmouj8609@163.com 
YAO Fang Zhuhai Power Supply Bureau,Guangdong Power Co.,Ltd.,Zhuhai,519075 China yfang909@163.com 
Hits: 157
Download times: 46
中文摘要:
      针对配电网故障电流信号受到各种噪声和干扰的影响,使得故障信号特征复杂多变,导致故障定位困难。因此,提出了一种基于高性能神经网络技术的配电网自动化故障定位算法。在配电网中每个区段安装馈线终端单元(FTU),采集故障电流信号并实施滤波处理,去除其中的噪声。从处理后的故障电流信号中提取边际谱特征,这些特征能够有效地反映故障的频域特性。构建高性能神经网络模型并实施训练,将边际谱特征作为训练后高性能神经网络的输入,输出配电网区段状态类型,将存在故障的区段作为定位结果。实验结果表明:所研究方法应用下,高性能神经网络定位结果与实际故障位置一致,证明神经网络模型在故障定位任务上表现出了高度的准确性和可靠性。
英文摘要:
      Due to the influence of various noises and interferences on the fault current signal of the distribution network, the characteristics of the fault signal are complex and varied, making fault location difficult. Therefore, a fault location algorithm for distribution network automation based on high-performance neural network technology is proposed. Install feeder terminal units (FTUs) in each section of the distribution network to collect fault current signals and implement filtering processing to remove noise. Extract marginal spectral features from the processed fault current signal, which can effectively reflect the frequency domain characteristics of the fault. Build a high-performance neural network model and implement training, using marginal spectral features as inputs for the trained high-performance neural network. Output the state types of distribution network sections, and use the sections with faults as localization results. The experimental results show that under the application of the studied method, the high-performance neural network localization results are consistent with the actual fault location, proving that the neural network model exhibits high accuracy and reliability in fault localization tasks.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd