• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于FOA-Elman神经网络的光伏电站短期出力预测模型
Short-term photovoltaic power forecasting based on Elman neural network with fruit fly optimization algorithm
Received:September 13, 2013  Revised:March 31, 2014
DOI:
中文关键词: 光伏电站  出力预测  Elman神经网络  FOA算法
英文关键词: photovoltaic power generation  power forecasting  Elman neural network  fruit fly optimization algorithm
基金项目:江苏省研究生培养创新工程(CXZZ12_0228);江苏省科技支撑项目(BE2012014)
Author NameAffiliationE-mail
HAN Wei* College of Energy and Electrical Engineering,Hohai University hanwei860610@126.com 
WANG Honghua College of Energy and Electrical Engineering,Hohai University  
DU Wei State Grid Electric Power Research Institute  
Hits: 1948
Download times: 1489
中文摘要:
      提出了基于果蝇优化算法(FOA)-Elman神经网络的光伏电站出力短期预测模型,采用具有动态递归性能的Elman神经网络,可增强光伏电站出力预测模型的联想和泛化推理能力,保证出力预测的精度。引入人体舒适度,减少输入向量个数;通过FOA对Elman神经网络进行学习训练,可充分利用FOA的全局寻优性能,克服常规学习算法易于陷入局部最优解、收敛速度慢、编程复杂等缺陷。最后,与常规Elman模型进行对比仿真实验,结果表明所提出预测模型的正确性和有效性。
英文摘要:
      The model based on Elman neural network (NN) with fruit fly optimization algorithm (FOA) is proposed to forecast the short-term photovoltaic (PV) power. By using the dynamic recurrent of Elman NN, the reasoning and generalization capacity of PV power forecasting model would be enhanced, at the same time, the accuracy of forecasting results ensured. Through introducing the human body amenity to reduce the number of input vectors and using the FOA to train the Elman NN, which can make full use of the global optimization performance of FOA, and overcome the defects such as local optimal solution, slow convergence speed and complex programming. Finally, in comparison with the simulation results of Elman NN, the numerical results verify the effectiveness and correctness of the proposed model and improved algorithm.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd