• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
新投产风电场的短期风速预测模型建立
Established of Short-term Wind Speed Prediction Model for New Wind Farm
Received:September 26, 2013  Revised:September 26, 2013
DOI:
中文关键词: 新投产风电场  短期风速预报  物理模型  统计模型  误差
英文关键词: new wind farm  short-term wind speed prediction  physical model  statistical model  error
基金项目:
Author NameAffiliationE-mail
Chen Xin* Zhong Neng Power-Tech Development CO.,LTD. chenxin@clypg.com.cn 
Hanmo Sun Zhong Neng Power-Tech Development CO.,LTD.  
Shen Zhu Zhong Neng Power-Tech Development CO.,LTD.  
Kaifeng Meng Zhong Neng Power-Tech Development CO.,LTD.  
Yue Jie Zhong Neng Power-Tech Development CO.,LTD.  
Hits: 2334
Download times: 1127
中文摘要:
      常规的风电场功率预测建模主要方法是将数值天气预报产生的气象要素输入基于历史scada数据建立统计模型,得到全场预报总功率。但是新投产的风电场没有历史scada数据,而风电场功率预测的准确性主要依赖于短期风速预报的精度。因此,为提高新投产风电场功率预测的准确性,短期风速预报的建立是基于数值气象预报的物理模型和统计模型相结合的方式。首先,通过数值气象模式输出风电场测风塔处轮毂高度层的气象要素;其次,通过建立神经网络模型和多元线性回归两种统计方法对模式输出数据进行修正;最后,对误差的来源进行分类分析。在江苏某风场的测试结果表明,较传统的方式,预测精度有了明显的提高,该方法能够消除数值气象预报的振幅偏差,但相位偏差仍是误差的主要来源。
英文摘要:
      The conventional wind power prediction method is primarily generated by numerical weather prediction based on historical scada build statistical model or physical model to get the total power prediction. As the new wind farm could not collect the historical scada data, and the accuracy of the wind farm power prediction relies on the accuracy of short-term wind speed prediction. Therefore, in order to improve the accuracy of short-term wind speed prediction for new wind farm. First of all, numerical weather model exported the meteorological element on turbine hub height layers; secondly, the output data are corrected by the establishment of neural network model and multiple linear regression models; finally, the sources of the error are classified and analyzed. The wind farm test in Jiangsu province results indicate that: this method can improve the accuracy of wind speed prediction significantly and eliminate the amplitude deviation of numerical weather prediction compared with traditional methods, but the phase deviation is still the main source of error.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd