• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进共轭梯度理论神经网络优化算法研究
The algorithm optimization based on improved conjugate gradient theoryof neural network
Received:January 05, 2014  Revised:January 05, 2014
DOI:
中文关键词: 神经网络  优化算法  共轭梯度  输出权值  数据库
英文关键词: Neural  network,optimization,conjugate  gradient,output  value,database
基金项目:
Author NameAffiliationE-mail
XING Xiao-min Institute of electrical engineering of Northeast Dianli University,Jilin City,Chuanying District No. 169,132012 Teacherxing@163.com 
SHANG Guo-jing* Institute of electrical engineering of Northeast Dianli University,Jilin City,Chuanying District No. 169,132012 137100559@qq.com 
Hits: 1901
Download times: 922
中文摘要:
      基于结构以三层网络相互连接为基础的神经网络模型,本文提出了一种新的优化算法,这种算法对于传统的共轭梯度算法进行改进,它是基于输出权值优化算法(OWO)和共轭梯度算法(CG)相结合的原理提出的,所以我们又称为输出权值优化共轭梯度算法(OWO-CG)。这种新的算法集两种算法的优点于一身,整个学习过程更加的迅速和准确。每一次的算法学习过程可以分为三个步骤:首先根据误差函数,利用共轭梯度法计算收敛因子,只修改输入层和隐层的权值因子。然后,计算的层单元的输出函数,使用输出权值优化理论构建并求解线性方程组以此得到的输出权值因子。最后,计算误差函数,利用该算法不停的修正神经网络回路的输出值与期望输出值之间的差值,直到满足精度要求为止。实验结果标明,与共轭梯度算法和输出权值优化法相比,这中算法大大的提高的训练速度。
英文摘要:
      Structure based on neural network model of three layer network connection as basis, this paper proposes a new optimization algorithm, this algorithm for the conjugate gradient algorithm to improve the traditional, it is the output weight optimization algorithm based on conjugate gradient algorithm (OWO) and (CG) combining theory is proposed, so we call as the output weight optimization conjugate gradient algorithm (OWO-CG). The new algorithm combines two kinds of algorithm in a body, the whole learning process more quickly and accurately. Algorithm to learn every time the process can be divided into three steps: firstly, according to the error function, convergence factor by using conjugate gradient method, only the changes in input layer and hidden layer weights factor. Then, the output function layer unit calculation, using the output weight optimization output weighting factor theory and solving linear equations in order to get. Finally, the calculation error correcting output function, neural network circuit using the algorithm keeps the value of the difference between the output values and expectations, until meet the accuracy requirements. The experimental results indicate that, compared with the conjugate gradient algorithm and output weight optimization method, this algorithm greatly improves the training speed.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd